摘要
Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
基金
This work is supported by NNSF of China (10571093)