摘要
将会话密钥S分解成S1与S2之和.在大整数分解困难问题的条件下,构造特殊等式来解密S1(方案1).在离散对数困难问题的条件下,利用不经意多项式估值协议和拉格朗日插值多项式来解密S2(方案2).两种方案通过线性迭加的方式进行组合,形成一种新的叛逆者追踪方案.新方案兼有前两种方案的共同优点,同时又弥补了它们各自的不足.新方案具有多服务性、抗共谋、非对称性、黑盒子追踪、前向安全性和后向安全性等优点,综合性能好于现有方案.
The session key S is divided into the sum of S1 and S2. Under the condition of a large integer factoring problem, S1 is decrypted by constructing a special equation(scheme 1). Under the condition of a discrete logarithm problem, S2 is decrypted by the OPE (Oblivious Polynomial Evaluation) protocol and Lagrange Interpolation Polynomial (scheme 2). On the basis of a linearly additive combination of scheme 1 and scheme 2, a new traitor tracing scheme is formed, which has advantages of both of them, and meanwhile overcomes their disadvantages. It has many advantages such as multi-service, collusionresistance, asymmetry, black-box tracing, forward-security and backward-security, and its compositive performance is also better than those of existing ones.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2007年第2期274-278,共5页
Journal of Xidian University
基金
国家自然科学基金资助项目(60372046)
中国博士后科学基金资助项目(20060400035)
甘肃省教育厅科研项目(0601B-08)
关键词
多服务
抗共谋
非对称
黑盒子追踪
前向安全性
后向安全性
multiple-service
collusion-resistance
asymmetric
black-box tracing
forward-security
backward-security