期刊文献+

短期负荷预测神经网络方法比较 被引量:12

Comparison of neural network methods for short-term load forecasting
在线阅读 下载PDF
导出
摘要 以某地区购网有功功率的负荷数据为背景,建立了三个BP神经网络负荷预测模型——SDBP、LMBP及BRBP模型进行短期负荷预测工作,并对其结果进行比较。针对传统的BP算法具有训练速度慢,易陷入局部最小点的缺点,采用具有较快收敛速度及稳定性的L-M优化算法进行预测,使平均相对误差有了很大改善,具有良好的应用前景。而采用贝叶斯正则化算法可以解决网络过度拟合,提高网络的推广能力,使平均相对误差和每日峰值相对误差降低,但收敛速度过慢(慢于SDBP模型),不适于在实际应用中采用。 Based on the load data of meritorious power of the power system of some area, three BP ANN models, named SDBP model, LMBP model and BRBP Model, are established to carry out the short-term load forecasting work, and the results are compared. As for the traditional BP algorithm has some unavoidable disadvantages such as the slow training speed and the feasibility of being plunged into local minimums, an optimized L-M algorithm, which has a quicker training speed and better stability, should be applied to forecast, which can effectively reduce the mean relative error. So it has a good application prospect. In contrast, Bayesian Regularization can overcome the excessive fitting, improve the generalization of an ANN and reduce the mean relative error and the relative error of everyday peak values, it is not suitable for actual application because of its slow training speed (slower than SDBP model).
出处 《继电器》 CSCD 北大核心 2007年第6期49-53,共5页 Relay
关键词 短期负荷预测 人工神经网络 L-M算法 贝叶斯正则化算法 优化算法 short-term load forecasting (STLF) ANN Levenberg-Marquardt algorithm Bayesian regularization optimized algorithms
  • 相关文献

参考文献11

  • 1Park D C,E1-Sharkawi M A,Marks R J,et al,Electric Load Forecasting Using an Artificial Neural Network[J].IEEE Trans on Power Systems,1991,6(2):442-449.
  • 2Lee K,Cha Y,Park J.Short-term Load Forecasting Using Neural Network[J].IEEE/PWRS 1991 Winter Meeting,1991.
  • 3Peng T M,Hubele N,Karady G.Advancement in the Application of Neural Network for Short-term Load Forecasting[J].IEEE/PWRS 1991 Summer Meeting,1991.
  • 4Carpinteiro O A S,Reis A J R,da Silva A P A.A Hierarchical Neural Model in Short-term Load Forecasting[J].Applied Soft Computing,2004:405-412.
  • 5Kodogiannis V S,Anagnostakis E M.A Study of Advanced Learning Algorithms for Short-term Load Forecasting[J].Engineering Applications of Artificial Intelligence,1999:159-173.
  • 6Srinivasan D,et al.Parallel Neural Network-fuzzy Expert System Strategy for Short-term Load Forecasting System Implementation and Performance Evaluation[J].IEEE Trans on Power Systems,1999,14(3):1100-1106.
  • 7Kim Chang-il,Yu In-keun,Song Y H.Kohonen Neural Network and Wavelet Transform Based Approach to Short-term Lcad Forecasting[J].Electric Power Systems Research,2002,63:169-176.
  • 8Hagan M T,Demuth,H B,Beale M H.Neural Network Design[M].DAI Kui,et al trans.Beijing:China Machine Press,2002.
  • 9Hornik K M,stinchcombe M,White H.Multilayer Feedforward Networks are Universal Approximators[J].Neural Networks,1989,2(5):359-366.
  • 10Hinton G E.Connectionist Learning Procedures[J].Artificial Intelligence,1989,40:185-234.

同被引文献95

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部