摘要
In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems. A convergence analysis for this iteration is presented. The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration. We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.
In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems. A convergence analysis for this iteration is presented. The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration. We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.