期刊文献+

一种基于优化小波特征的非线性目标跟踪算法 被引量:5

Nonlinear target tracking method based on optimized wavelet features
在线阅读 下载PDF
导出
摘要 提出了一种基于优化小波特征的,应用于复杂背景干扰环境中的非线性目标跟踪算法。选取Gabor小波网络来表征目标的空域特性,即运用一定数量的小波构成一个集合,利用优化方法优化小波参数,从而获得稳健的Gabor小波集合来表示目标特征。运用优化的非线性粒子滤波算法,使每个粒子表示目标特征的一组估计运动参数,并通过L-M优化方法使粒子向局部峰值点移动,呈现出“多峰”的跟踪形式。实验结果表明:该算法对光照、噪声不敏感,具有较强的抗局部遮挡能力,平均跟踪误差小于一个像素,与标准的非线性粒子滤波跟踪算法相比,平均跟踪误差减小了50%。 For tracking in complicated environment,a nonlinear target tracking method based on optimized wavelet features is proposed. Gabor wavelet network (GWN)is used to describe the features of the object. GWN includes a set of wavelets, and each of their parameters is computed by optimization procedure. The tracking framework is based on optimized particle filter and each particle figures a set of possible motion parameters. L-M optimization is then employed to drive the particles to the local peak values,and tracking with optimized particle filters is robust and efficient as a result of multimodality. The tracking result shows that the algorithm is robust to illumination variation and noise, and it also has the strong ability of tracking under local occlusion. Compared with standard particle filter method, the average tracking error of the proposed algorithm is within 1 pixel, which has been reduced by 50 %.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第3期428-433,共6页 Optics and Precision Engineering
基金 国家863计划资助项目(No.2002AA783050)
关键词 粒子滤波 Gabor小波网络 L—M优化 视频跟踪 particle filter Gabor wavelet network L-M optimization visual tracking
  • 相关文献

参考文献19

  • 1陈浩,谭久彬.一种用于光电目标跟踪的非线性滤波算法[J].光学精密工程,2006,14(5):917-921. 被引量:17
  • 2朱明,鲁剑锋,胡硕.采用DSP的电视测量跟踪器的研制[J].光学精密工程,2005,13(z1):232-235. 被引量:15
  • 3ZHANG Q.Using wavelet network in nonparametric estimation[J].IEEE Trans.Neural Netw.,1997,8(2):227-236.
  • 4ZHANG Q,BENVENISTE A.Wavelet networks[J].IEEE Trans.Neural Netw.,1992,3:889-898.
  • 5SZU H,TELFER B,KADAMBE S.Neural network adaptive wavelets for signal representation and classification[J].Opt.Eng.,1992,31:1907-1961.
  • 6KRUGER V,SOMMER G.Gabor wavelet networks for object representation[J].Proc.Int.Dagstuhl 2000 Workshop,2000:309-316.
  • 7FERIS R S,KRUGER V.Wavelet subspace method for real-time face tracking[J].J.Real-time Imaging,2004,10(6):339-350.
  • 8DEUTSCHER J,BLAKE A,REID I.Articulated body motion capture by annealed particle filtering[C].Proceedings of International Conference on Computer Vision and Pattern Recognition,Hilton Head Island,2000,2:126-133.
  • 9LI P,ZHANG T.Visual contour tracking based on particle filter[J].Image and Vision Comput.,2003,21(1):111-123.
  • 10CHENG C,RASHID A.Kernel particle filter:iterative sampling for efficient visual tracking[C].International Conference on Image Processing,2003,2:425-435.

二级参考文献41

  • 1周家林,段正澄,邓建春,李勇,邵新宇.基于粒子群算法的神经网络优化及其在镗孔加工中的应用[J].中国机械工程,2004,15(21):1927-1929. 被引量:18
  • 2王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116. 被引量:123
  • 3[9]BARNEA D I,SILVERMAN H E.A class of algorithms for digital image registration[J].IEEE,1972,C-21(2):179-186.
  • 4[10]KASHEF B G.A survey of new techniques for image registration and mapping[J].SPIE,1983,443:222-239.
  • 5[11]BAYESTECH K G.A review of image matching techniques[J].SPIE,1986,164-172.
  • 6[14]Texas Instruments Incorporated.TMS320C62xx Peripherals Reference Guide[Z].1999.
  • 7[15]Texas Instruments Incorporated.TMS320C6x Optimizing C Compiler User Guide[Z].1999.
  • 8何国金,中国图象图形学报,1999年,4卷,9期,744页
  • 9焦李成,电子学报,1993年,21卷,7期,91页
  • 10ZHANG Q,BENVENISTE A.Wavelet networks[J].IEEE Trans.on NN,1992,3(11):889-898.

共引文献113

同被引文献69

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部