期刊文献+

Ergodicity of Quasi-birth and Death Processes(Ⅰ) 被引量:1

Ergodicity of Quasi-birth and Death Processes(Ⅰ)
原文传递
导出
摘要 Quasi-birth and death processes with block tridiagonal matrices find many applications in various areas. Neuts gave the necessary and sufficient conditions for the ordinary ergodicity and found an expression of the stationary distribution for a class of quasi-birth and death processes. In this paper we obtain the explicit necessary and sufficient conditions for/-ergodicity and geometric ergodicity for the class of quasi-birth and death processes, and prove that they are not strongly ergodic. Keywords ergodicity, quasi-birth and death process. Quasi-birth and death processes with block tridiagonal matrices find many applications in various areas. Neuts gave the necessary and sufficient conditions for the ordinary ergodicity and found an expression of the stationary distribution for a class of quasi-birth and death processes. In this paper we obtain the explicit necessary and sufficient conditions for/-ergodicity and geometric ergodicity for the class of quasi-birth and death processes, and prove that they are not strongly ergodic. Keywords ergodicity, quasi-birth and death process.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第2期201-208,共8页 数学学报(英文版)
基金 partially supported by NSFC(No.10171009) Research Fund for PhD Programs of MOE of China(No.20010533001) Research Fund for Educational Innovation for Doctorates of CSU(No.030602)
关键词 ERGODICITY quasi-birth and death process Markov chain matrix geometric solutions ergodicity, quasi-birth and death process, Markov chain, matrix geometric solutions
  • 相关文献

参考文献14

  • 1Evans, R. V.: Geometric distribution in some two-dimensional queueing systems. Opns. Res., 15, 830-846(1976)
  • 2Wallace, V.: The solution of quasi-birth and death processes arising from multiple access computer systems,Ph.D. diss., Systems Engineering Laboratory, University of Michigan, Tech. Rept., no. 07742-6-T, 1969
  • 3Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, 1981
  • 4Hou, Z. T., Liu, Y. Y.: Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues. J. Appl. Probab., 41(3), 778-790 (2004)
  • 5Hou, Z., Li, X.: Explicit criteria for several types of ergodicity of Markov chains in the kind of IPP+M/M/1 queue, submitted for publication
  • 6Zhang, H. et al.: Strong ergodicity of monotone transition functions. Statistic & Probability Letters, 55,63-69 (2001)
  • 7Mao, Y. H.: Algebraic convergence for discrete-time ergodic Markov chains. Science in China, 33(2),152-160 (2003) (Chinese Edition)
  • 8Hou, Z., Guo, Q.: Homongenerous Denurmerable Markov Processes, Science Press, Beijing, 1978
  • 9Tian, N.: Quasi-Birth and Death Processes and Matrix-geometric Solutions, Science Press, Beijing, 2002
  • 10Gantmacher, F. R.: The Theory of Matrices, Chelsea, New York, 1959

同被引文献15

  • 1陈木法.Analytic proof of dual variational formula for the first eigenvalue in dimension one[J].Science China Mathematics,1999,42(8):805-815. 被引量:27
  • 2侯振挺,李晓花.拟生灭过程几种遍历性的判别准则(Ⅱ)[J].数学年刊(A辑),2005,26(2):181-192. 被引量:1
  • 3Mufa Chen.Analytic proof of dual variational formula for the first eigenvalue in dimension one[J].Science in China Series A: Mathematics.1999(8)
  • 4Z. T. Hou,M. F. Chen.Markov processes and field theory[].Kuoxue Tongbao.1980
  • 5Diaconis,P.,Saloff-Coste,L.Logarithmic Sobolev inequalities for finite markov chains[].Annals of Applied Probability.1996
  • 6Neuts MF.Matrix-Geometric Solutions in Stochastic Models[]..1981
  • 7Naishuo Tian,Zhe George Zhang.A Two Threshold Vacation Policy in Multiserver Queueing Systems[].European Journal of Operational Research.2006
  • 8M. F. Chen.From Markov Chains to Non-equilibrium Particle Systems[]..2004
  • 9G. O. Roberts,R. L. Tweedie.Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains[].Journal of Applied Probability.2001
  • 10Jerrum M,Son J B,Tetall P,Vigoda E.Elementary bounds on Poincare and Log- Sobolev constants for decomposable Markov chains[].Annals of Applied Probability.2004

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部