期刊文献+

基于扩展的信息熵的决策表属性约简算法 被引量:5

Decision table attribute reduction algorithm based on extended information entropy
在线阅读 下载PDF
导出
摘要 从一种扩展的信息观的角度出发,讨论了Rough集理论的信息论观点。提出了一种基于扩展的信息熵的决策表核属性计算算法,并设计了以属性重要性为启发信息的自下而上的决策表属性约简算法EIEAAR。同时针对不一致表,将属性对不相容对象的包含值作为第二标准选择属性以加快约简速度。EIEAAR算法能处理一致和不一致决策表,并将核属性计算和非核属性约简统一起来。最后,对算法进行复杂度分析并用实例验证算法的有效性。实验表明该算法能有效得到决策表的最小约简。 The rough set theory is discussed in the light of an extended information view.A core attribute computation algorithm of decision table based on extended information entropy is proposed.And a from-bottom-to-top decision table attribute reduction algorithm which takes the significance of the attribute as the heuristic information is designed.Meanwhile,the including value of attributes is adopted as the second standard to choose attribute in order to make the reduction faster.The new algorithm "EIEAAR" can deal with both the consistent and inconsistent decision tables,and integrate the core attribute computation and non-core attribute reduction in a whole.At last,the complexity of the algorithm is analyzed and two kinds of examples are taken to test the validity of the algorithm.The experiment shows that the algorithm is valid.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期167-169,172,共4页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)(the National Grand Fundamental Research 973 Program of China under Grant No.2003CB317005) 上海市曙光计划项目(No.05SG15)
关键词 粗糙集理论 信息熵 核属性 属性约简 rough set theory information entropy core attribute attribute reduction
  • 相关文献

参考文献12

二级参考文献50

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2张文修 等.Rough集理论与方法[M].北京:科学出版社,2001..
  • 3JosephGiarratano GaryRiley.专家系统原理与编程[M].北京:机械工业出版社,2000.1~3.
  • 4Pawlak Z, Grzymala-Busse J, Slowinski R, et al. Rough sets[J] . Communication of the ACM, l995, 38(11): 89-95.
  • 5Wang G Y. Algebra view and information view of rough sets theory[A]. Data Mining and Knowledge Discovery: Theory, Tools, and Technology III[C]. Bellingham: SPIE-The International Society for Optical Engineering, 2001. 200-207.
  • 6Wang G Y, Yu H, Yang D C, et al. Knowledge reduction based on rough set and information entropy[A]. Proceedings of World Multiconference on Systemics, Cybernetics and Informatics[C]. Orlando: IIIS, 2001. 555-560.
  • 7Hu X H, Cercone N. Learning in relational databases: a rough set approach[J]. Computational Intelligence, 1995, 11(2): 323-337.
  • 8Wang G Y. Attribute core of decision table[A]. Rough Sets and Current Trends in Computing[C]. Berlin: Springer-Verlag, 2002. 213-217.
  • 9Pawlak Z, Rough sets Theoretical Aspects of Reasoning about Data [M]. Nowowiejska 15/19, Warsaw, Poland, 1990.
  • 10PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11: 341-356.

共引文献687

同被引文献74

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部