期刊文献+

广义B样条曲线及其节点插入算法

Generalized B-Splines and Knot Insertion Algorithm
在线阅读 下载PDF
导出
摘要 通过二阶常系数微分算子的零空间及其初值问题解的唯一性,引入了广义B样条曲线的概念,给出了B样条曲线的一种统一表示形式,介绍了该样条的求值算法及节点插入算法,并对其凸包性质和变差缩减性质作了分析,最后给出了相应算例。数值实验表明:该算法对任意样条都适用,且结果准确、有效。 A new representation to splines is introduced and the concept of generalized B-sphnes is presented by considering the null space of a second order constant coefficient differential operator and the unique solution to an initial-value problem; it shows the evaluation algorithm and knot insertion algorithm for generalized B-splines and analyses convex-hull property and variation-diminishing result. At last, some examples show that the algorithm is valid to all kinds of splines.
作者 谢伟松 张硕
机构地区 天津大学理学院
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期141-144,148,共5页 Journal of East China University of Science and Technology
基金 天津大学-南开大学刘徽应用数学研究中心资助项目
关键词 广义B样条曲线 凸包性质 变差缩减性质 求值算法 节点插入算法 generalized B-splines curve convex-hull property variation-diminishing result evaluation algorithm knot insertion algorithm
  • 相关文献

参考文献5

  • 1Koch P E, Lyche T, Neamtu M, et al, Control curves and knot insertion for trigonometric splines[J]. Advances in Computational Mathematics, 1995,3: 405-424.
  • 2苏本跃,黄有度.T-B样条曲线及其应用[J].大学数学,2005,21(1):87-90. 被引量:16
  • 3吴晓勤,唐运梅.曲率连续的三角B样条曲线与曲面[J].计算机应用与软件,2005,22(1):118-120. 被引量:8
  • 4Jena M K, Shunmugaraj P, Das P C. A subdivision algorithm for generalized Bernstein-Bezier curves [J]. Computer Aided Geometric Design, 2001,18 : 673-698.
  • 5Gonsor D, Neamtu M. Null spaces of differential operators,poiar forms, and splines[J]. Journal of Approximation Theory, 1996,86(1):81-107.

二级参考文献13

  • 1朱仁芝,程谟嵩.拟合任意空间曲面的三角函数方法[J].计算机辅助设计与图形学学报,1996,8(2):108-114. 被引量:48
  • 2张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:237
  • 3G Farin, Rational Curves and Surfaces, in: T Lyche, L Schumaker ( Eds. ),Mathematical Methods in Computer Aided Geometric Desioa. Academic Press, Boston. 1989.
  • 4L Piegl, On NURBS: A survey, 1EEE Computer Graphics and Applications,1991,11(1),55 - 71.
  • 5H Potlmann, M G Wagner, Helix Splines as an example of arlene Tehebycheftian Splines. Adv Comput Math. 1994,2,123 - 142.
  • 6J M Pona, Shape Preserving Representations for Trigonometric Polynomial Curves, Computer Aided Getmetric Design, 1997,14 : 5 - 11.
  • 7E Mamar, et al, Shape Preserving alternatives to the rational Bézier model, Computer Aided Geometric Desioa, 2001,18 ( 1 ) :37 - 60.
  • 8G Farin, Rational Curves and Surfaces, in: T Lyche, L Schumaker ( Eds. ),Mathematical Methods in Computer Aided Geometric Desioa. Academic Press, Boston. 1989.
  • 9H Pottmann, M G Wagner, Helix Splines as an example of affine Tchebycheffian Splines. Adv Comput Math. 1994,2,123 - 142.
  • 10J M Pona, Shape Preserving Representations for Trigonometric Polynomial Curves, Computer Aided Gepmetric Design, 1997,14 : 5 - 11.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部