期刊文献+

基于时空马尔可夫随机场模型的车辆跟踪算法研究 被引量:2

A Vehicle tracking algorithm based on spatial-temporal Markov random field model
在线阅读 下载PDF
导出
摘要 鲁棒的车辆跟踪是实现交通事件自动检测的重要前提,车辆跟踪中的车辆相互遮挡则是影响车辆跟踪结果的关键因素。针对这一难题,设计自适应的车辆跟踪算法,并依据交通图像序列的时空相关性,根据马尔可夫的基本理论和贝叶斯方法,应用MRF-MAP理论分析框架,并结合了彩色图像序列的纹理信息建立了图像序列的时空马尔可夫随机场模型。采用随机松弛算法中的Metropolis算法来求解时空马尔可夫随机场模型,对车辆跟踪得到的目标标号图进行优化,从而解决车辆跟踪中的遮挡问题。初步实验结果,跟踪不遮挡的车辆时达到的跟踪成功率为95%。遮挡情况时成功率也可达到83%。实验结果表明,该跟踪算法在不遮挡时效果非常理想,在遮挡情况下跟踪鲁棒性也较好。 Robust vehicle tracking algorithm is an important precondition for realizing traffic event detection, but occlusion is a key influence factor for vehicle tracking. An adaptive vehicle tracking algorithm is designed to deal with the problem. In addition, according to the spatial and temporal characteristics of traffic image sequences, using basic Markov theory and Bayesian method, and combining texture information of color image sequences, a spatial- temporal Markov random field model of image sequence is built. After object maps are optimized with the Metropolis stochastic algorithm, the occlusion problem in vehicle tracking is solved. Preliminary experimental result, the tracking success ratio when vehicles are not occluded with each other is 95%, and when being occluded the tracking success ratio is 83%. The experimental results indicate that this tracking algorithm is accurate when being not occluded and acceptable when being occluded.
机构地区 东南大学
出处 《土木工程学报》 EI CSCD 北大核心 2007年第1期74-78,共5页 China Civil Engineering Journal
基金 高等学校科技创新工程重大项目培育资金项目(705020) 江苏省自然科学基金项目(BK2004077)
关键词 车辆跟踪 遮挡 时空马尔可夫随机场模型 随机松弛算法 vehicle trackin occlusion spatial-temporal Markov random field model stochastic relaxation algorithm
  • 相关文献

参考文献11

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision,1987, 1 (4): 321-331
  • 2Smith S M, Brady J M. ASSET-2: real-time motion segmentation and shape tracking[J]. IEEE Trans. Pat. Anal.Mach. Intel., 1995,17 (8) : 814-820
  • 3Senior A, Hampapur A, Tian Y L, et al. Real-time motion segmentation and shape tracking [ C ]//Second international workshop on performance evaluation of tracking and surveillance Systems. 2001
  • 4陆明俊,王润生.计算机视觉中的Markov随机场方法[J].电子科学学刊,2000,22(6):1028-1037. 被引量:11
  • 5Shunsuke kamijo, Tsunetoshi nishida, Suguru satoh, et al.Automated behavior and statistical analyses from traffic images based on vehicle tracking Algorithm [C]//The IEEE 5^th international conference on intelligent transportation systems. 2002:920-925
  • 6Shunsuke kamijo, Yasuyuki matsushita, Katsushi ikeuchi, etal. Traffic monitoring and accident detection at Intersections[J].IEEE Transactions on Intelligent Transportation Systems,2000,1 (2) :108-118
  • 7A Murat Tekalp. Digital video processing [ M ]. Beijing:Tsinghua University Publishing House, 1998:119-120
  • 8Geman S, Geman D. Stochastic relaxation, gibbs distributions and the Bayesian restoration of images[J]. IEEE Trans. Pat.Anal. Mach. Intel., 1984,6 (6) :721-741
  • 9Besag J. Spatial interactions and the statistical analysis of lattice systems [J]. J Roy Statist Soc., 1974:36 (2) :192-236
  • 10Bilbro G L, Snyder W E. Optimization of functions with many minima [J]. IEEE Trans.Syst.,Man and Cyber.,1991,7 (8) :840-849

二级参考文献7

共引文献10

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部