期刊文献+

关于双参数C_0半群的一些结果 被引量:16

Some results of two-parameter C_0 semigroups
在线阅读 下载PDF
导出
摘要 为了丰富半群理论,利用经典的算子半群理论中的方法和双参数C0半群的概念,将单参数的C0半群的一些性质推广到双参数的C0半群,得到双参数的C0半群、生成元及其预解式的一些基本结果. In order to enrich the theory of semigroups, classical methods in operator semigroups theory and definition of two-parameter C0 semigroups are introduced tand some of one-parameter C0 semigroups' properties are generalized to get some properties of two parameter C0 semigroups. Basic results like twoparameter C0 semigroups,generator and its resolvent are obtained.
作者 秦喜梅
出处 《安徽工程科技学院学报(自然科学版)》 2006年第4期66-68,共3页 Journal of Anhui University of Technology and Science
基金 安徽省教育厅科研基金资助项目(2003kj165)
关键词 双参数C0半群 无穷小生成元 顶解式 two-parameter Co semigroup infinitesimal generator resolvent
  • 相关文献

参考文献4

  • 1Pazy A. Semigroup of linear operators and applications to partial differential equations[M]. New Yorkz Springer-Verlag, 1983.
  • 2Al-Sharif Sh, Khalil R. On the generator of two parameter semigroups[J]. Applied Mathematics and Computation,2004,156 :403 - 414.
  • 3Arcndt W. Vector-valued Laplace Transforms and Cauchy Problem[J]. Israel J. of Mathematics, 1987,59 (3)1327-352.
  • 4贾云锋,曹怀信.无穷小生成元对指数有界C-半群的刻划[J].甘肃工业大学学报,2003,29(2):121-123. 被引量:4

二级参考文献7

  • 1Davies E B, Pang M M H. The Cauchy problem and a generalization of the Hille-Yosida theorem[J]. Proc London Math Soc, 1987, 55(1): 180-208.
  • 2Pazy A. Semigroups of linear operators and applications to partial differential equations[M]. New York:Springer Verlag, 1983.
  • 3Goldstein J A. Semigroups of linear operators and applications[M]. NewYork: Oxford University Press, 1985.
  • 4Conway J B. A course in functional analysis[M]. New York:Spring-Verlag, 1985.
  • 5Ahmed N U. Semigroup theory with applications to systems and xontrol[M]. New York:John Wiley and Sons, 1991.
  • 6Naoki Tanaka, Noboru Okazawa. Local C-semigroups and local integrated semigroups[J]. Proc London Math Soc, 1990,61(3), 63-90.
  • 7姚景齐.指数有界C-半群的共轭半群[J].系统科学与数学,1999,19(3):319-322. 被引量:7

共引文献3

同被引文献72

  • 1胡敏,宋晓秋,魏巍,张祥之.n次积分C-半群的表示定理[J].山东科技大学学报(自然科学版),2004,23(4):89-91. 被引量:8
  • 2胡占荣,郭春梅.Yosida逼近的应用(英文)[J].华北工学院学报,2004,25(6):416-418. 被引量:4
  • 3刘曼,郭玲利.n次积分C半群的表示定理[J].徐州工程学院学报,2005,20(5):4-8. 被引量:8
  • 4HILLE E,PHILLIPS R S.Functional analysis and semigroups[M].New York:Am Math Soc Colloq Public,1957.
  • 5ARORA S,SHARDA S.On two parameter semigroup of opertors,lecture notes in mathematics[C]∥Proceeding of a Conference held in Memory of U.N.Singh.New Delhi:University of Delhi,1990.
  • 6SHARIF A S,KHALIL R.On the generator of two parameter semigroups[J].Applied Mathematics and Computation,2004,156(2):403-414.
  • 7LAWSON J A,ROBBIE D A.Two-parameter semigroups[J].Semigroup forum,2006,72(1):15-35.
  • 8PAZY A.Semigroups of linear operators and application to partial differential equations[M].New York:Springer-Verlag,1983.
  • 9Hille E,Phillips R S.Functional analysis and semigroups[M].New York:Am Math Soc Colloq Public,1957.
  • 10Arora S C,Sharda S.On two parameter semigroup of operators[M] //Proc of a conference held in memory of U.N.Singh.New Delhi:Univ of Delhi,1990:147-153.

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部