期刊文献+

基于品类聚类的关联规则优化算法 被引量:1

AN IMPROVED ALGORITHM BASED ON CATEGORY CLUSTERING FOR MINING ASSOCIATION RULES
在线阅读 下载PDF
导出
摘要 提出了一种基于品类聚类的关联规则优化算法。该算法首先根据文中定义的品类特征向量,用结构化的数据来表示事务;然后根据一种基于密度的聚类算法,对结构化的数据进行聚类,同时将对应的原始事务进行聚类;最后根据聚类后得到的类的长度以及用户指定的最小支持度,确定类内的最小支持度,在类内挖掘关联规则。实验结果表明,与传统算法相比,该算法效率较高,具有一定的实用价值。 A category-based algorithm is proposed in this paper to enhance ruining association rules. This algorithm involves three steps of processing:transactions are first represented as transaction-category points based on the predefined category feature vectors;these transactioncategory points and transactions are then clustered with the applied clustering algorithm ;finally, the minimum support of the cluster is calculated based on the result number of points in a specified cluster and the user-defined minimum support, and a traditional algorithm is applied to get association rules in the cluster. The experimental result shows that this algorithm is effective and practical.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第1期140-142,184,共4页 Computer Applications and Software
关键词 品类信息 事务聚类 关联规则 Category information Transaction clustering Association rules
  • 相关文献

参考文献6

  • 1R.Agrawal,T.Imielinski,A.Swami.Mining association rules between sets of items in large databases[C].Proceedings of the ACM SIGMOD Conference on Management of data,Washington,DC,USA,1993,pp.207~216.
  • 2J.Han,J.Pei,Y.Yin.Mining frequent patterns without candidate generation[C].In Proc.2000 ACM SIGMOD Int.Conf.Management of Data,Dallas,TX,USA,2000.pp.1~12.
  • 3Fan-Chen Tseng,Ching-Chi Hsu.Generating frequent patterns with the frequent pattern list[C].Proceedings of the Pacific-Asia Conference of Data Mining and Knowledge Discovery,Hong Kong,2001.pp.376~386.
  • 4R.Srikant and R.Agrawal.Mining generalized association rules[C].Proceedings of the 21th International Conference on Very Large Data Bases,1995.pp.407~419.
  • 5阮备军,朱扬勇.基于商品分类信息的关联规则聚类[J].计算机研究与发展,2004,41(2):352-360. 被引量:17
  • 6A.Rakesh,G.Johanners,G.Dimitrios,R.Prabhakar.Automatic subspace clustering of high dimensional data for data mining applications[C].In Proc.of the 1994 ACM SIGMOD Int.Conf.on Management of Data.Minneapolis:ACM Press,1994.pp.94~105.

二级参考文献14

  • 1E G Hetzler, W M Harris, S Harvre et al. Visualizing the full spectrum of document relationships. In: Proc of the 5th Int'l Society for Knowledge Organization Conference. Würzburg: Ergon, 1998. 168~175
  • 2P C Wong, P Whitney, J Thomas. Visualizing association rules for text mining. In: Proc of IEEE Symposium on Information Visualization(INFOVIS'99). San Francisco: IEEE Computer Society, 1999. 120~123
  • 3M Hao, M Hsu, U Dayal et al. Market basket analysis visualization on a spherical surface. HP Labs, Technical Report: HPL-2001-3, 2001
  • 4H Toivonen, M Klemettinen, P Ronkainen et al. Pruning and grouping discovered association rules. The ECML-95 Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, Heraklion, 1995
  • 5G K Gupta, A Strehl, J Ghosh. Distance based clustering of association rules. In: Proc of ANNIE, St. Louis, Missouri: ASME Press, 1999. 759~764
  • 6M Ankerst, M Breunig, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: Proc of 1999 ACM-SIGMOD Int'l Conf Management of Data (SIGMOD'99). Philadephia: ACM Press, 1999. 49~60
  • 7J Han, Y Fu. Discovery of multiple level association rules from large databases. In: Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 420~431
  • 8R Srikant, R Agrawal. Mining generalized association rules.In:Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 407~419
  • 9A Savasere, E Omiecinski, S Navathe. Mining for strong negative associations in a large database of customer transactions. In: Proc of the 14th Int'l Conf on Data Engineering. Orlando: IEEE Computer Society, 494~502
  • 10B Lent, A N Swami, J Widom. Clustering association rules. In: Proc of the 13th Int'l Conf on Data Engineering. Birmingham: IEEE Computer Society, 1997. 220~231

共引文献16

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部