期刊文献+

大跨屋盖结构风致抖振响应研究 被引量:24

A study on the wind-induced buffeting responses of large-span roof structures
在线阅读 下载PDF
导出
摘要 建立基于非定常风荷载的大跨屋盖结构风致动力响应的试验和分析方法。该方法采用多通道测压系统扩大同步测压点的数目,更全面地获得屋盖表面风压的时空特性,为准确计算结构风致响应奠定了基础。在动力分析方法上应用CQC法计算屋盖结构的风振响应,考虑多模态及模态间的耦合影响,编制了结构风致动力效应计算程序SWDP。最后对上海铁路南站工程屋盖结构的抖振响应结果进行了计算和分析。结果表明,采用多通道测压系统可以有效地扩大同步测压点的数目;基于非定常风荷载的CQC方法是计算复杂大跨屋盖结构风振响应的有效方法;背景响应对于总响应的贡献通常是不可忽略的。 A systematic method is developed for test and analysis of the non-steady wind pressure distributions in wind tunnel test of wind-induced dynamic responses of large-span roof structures. The parallel tube-manifold system is applied to augment the number of simultaneous measuring points to ensure that the non-steady wind pressures on a large-span roof can be obtained simultaneously from the rigid model wind tunnel test. The wind-induced buffeting responses can be computed by using the mode-superposition method (Complete Quadratic Combination method) , to take the modal coupling effects into account, and a corresponding computer code-SWDP is developed. The characteristics of the buffeting responses of the roof structure of the Shanghai South Railway Station are analyzed. The results indicate: (1) the parallel tube-manifold system can effectively extend the number of simultaneous measurement points of wind pressures, (2) the non-steady wind load-based CQC method can be effectively employed for computing the dynamic responses of large roof structures, and (3) the background components usually contribute significantly to the total buffeting responses.
机构地区 同济大学
出处 《土木工程学报》 EI CSCD 北大核心 2006年第11期37-42,共6页 China Civil Engineering Journal
基金 国家创新研究群体科学基金(50321803)
关键词 大跨屋盖结构 非定常气动力 多通道测压系统 CQC法 动力响应 large-span roof structure non-steady wind pressure parallel tube-manifold system complete quadratic combination method dynamic response
  • 相关文献

参考文献9

  • 1Holmes J.Wind-tunnel test techniques for low-rise buildings,large roof structures,and windborne debris[G].Croucher Advances Study Institute on "State-of-the-art Wind Tunnel Modelling and Data Analysis Techniques for Infrastructures and Civil Engineering Applications".6-10 Dec.2004.HKUST
  • 2Nakamura O,Tamura Y,Miyashita K,et al.A case study of wind pressure and wind-induced vibration of a large span open-type roof[J].J.Wind Eng.Ind.Aerodyn.,1994,52:237-248
  • 3Suzuki M,Sanada S,Hayami Y,et al.Prediction of wind induced response of a semi-rigid hanging roof[J].J.Wind Eng.Ind.Aerodyn.,1997,72:357-366
  • 4Uematsu Y,Yamada M,Karasu A.Design wind loads for structural frames of flat long-span roofs:Gust loading factor for the beams supporting roofs[J].J.Wind Eng.Ind.Aerodyn.,1997,66:35-50
  • 5Uematsu Y,Watanabe K,Sasaki A,et al.Wind-induced dynamic response and resultant load estimation of a circular flat roof[J].J.Wind Eng.Ind.Aerodyn.,1999,83:251-261
  • 6黄鹏,全涌,顾明.TJ-2风洞大气边界层被动模拟方法的研究[J].同济大学学报(自然科学版),1999,27(2):136-140. 被引量:93
  • 7周毅,顾明.并联管道耗散模型的理论研究[J].振动与冲击,2004,23(3):79-82. 被引量:13
  • 8傅钦华,陈东杰,黄鹏,顾明.上海铁路南站风荷载试验研究[J].结构工程师,2003,19(3):61-65. 被引量:3
  • 9同济大学土木工程防灾国家重点实验室.南京奥林匹克体育中心体育场屋盖气动弹性模型风洞试验研究报告[R].同济大学土木工程防灾国家重点实验室,2003..

二级参考文献12

  • 1[1]Yoshida M,Kondo K,Suzuki M.Fluctuaing wind pressure measured with tubing system,J.Wind Engng Iudust.Aerodynam.,41-44,1992,987-998
  • 2[2]Surry D,Stathopoulos T.An experimental approach to the economical measurement of spatially-averaged wind loads,J.Indust.Aerodynam.,2,1979,385-397
  • 3[3]Gerstoft P.A new tubing system for the measurement of fluctuating pressures,J.Wind Engng Indust.Aerodynam.,25,1987,335-354
  • 4[5]蔡亦钢.流体传输管道动力学.杭州:浙江大学出版社,1990
  • 5[6]Gumley S J.Tubing systems for pneumatic averaging of fluctuating pressrures,J.Wind Engng Indust.Aerodynam.,12,1983,189-228
  • 6[7]Gumley S J.A detailed design method for pneumatic tubing systems,J.Wind Engng Indust.Aerodynam.,13,1983:441-452
  • 7(GBS0009—2001).建筑结构荷载规范.[S].,..
  • 8张相庭,高层建筑抗风抗震设计计算,1997年
  • 9施宗城,同济大学学报,1994年,22卷,4期,469页
  • 10刘尚培(译),风对结构的作用.风工程导论,1992年

共引文献103

同被引文献200

引证文献24

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部