期刊文献+

基于撞击流混合器压力波动信号的小波多重分形奇异谱 被引量:10

Wavelet Multi-fractal Singularity Spectrum:Application to Pressure Fluctuation in an Impinging Stream Mixer
在线阅读 下载PDF
导出
摘要 为了探讨浸没循环撞击流混合器撞击区非线性和混沌特性,引入不同测度多重分形分析的方法,用小波变换模极大值与多重分形测度分析方法相结合,检测混合器撞击区压力波动信号奇异性并得出多重分形奇异谱.结果显示奇异谱基本呈单峰形状,表明混合器中压力波动信号具有明显的多重分形特性,且Holder指数大概分布在0.5~3.5之间,其中,撞击区的径向范围r≤20mm的Holder指数分布大于1.0的较多,表明撞击区内的信号奇异性增强,撞击区的径向范围为r≤20mm. In order to understand the intrinsic features of heterogeneity, non-linearity and chaotic behavior of fluid system in an impinging stream mixer, the wavelet transform modulus maxima method and multi-fractal measurement analysis were presented to describe the heterogeneity features of the pressure fluctuation in the impinging area. Based on the method, the multi-fractal singularity spectra of pressure fluctuation signals were measured in the impinging stream mixer. The multi-fractal characteristic of pressure fluctuation signal is shown in the impinging stream mixer and the exponent H values are from 0.5 to 3.5, whereas H〉1.0 is shown with r≤20 mm. Thus, r≤20 mm is considered as the radial limitation in the impinging area.
作者 张建伟 焦丽
出处 《过程工程学报》 EI CAS CSCD 北大核心 2006年第4期627-632,共6页 The Chinese Journal of Process Engineering
关键词 信号处理 湍流 撞击流 压力波动 多重分形 小波变换 奇异谱 signal processing turbulent flow impinging stream pressure fluctuation multi-fractal wavelet transform singularity spectrum
  • 相关文献

参考文献9

  • 1Halsey D C,Jensen M H,Kadanoff L P,et al.Fractal Measures and Their Singularities:The Characterization of Strange Sets[J].Phys.Rev.A,1986,33(22):1141-1151.
  • 2Jamil A,Mourad B S.Multi-fractal Formalism for Quasi-self-similar Functions[J].J.Statistical Phys.,2002,108(314):541-590.
  • 3Arneodo A,Bacry E,Muzy J F.The Thermodynamics of Fractals Revisited with Wavelets[J].Physica A,1995,213:232-275.
  • 4Mallat S,Hwang W L.Singularity Detection and Processing with Wavelets[J].IEEE Trans.TIT,1992,38(2):617-643.
  • 5Chhabra A B,Meneveau C,Jensen R V.Direct Determination of the f(α)Singularity Spectrum and Its Application to Fully Developed Turbulence[J].Phys.Rev.A,1989,40(9):5284-5294.
  • 6李后强 汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.1-49.
  • 7Bacry E,Muzy J F,Arneodo A.Singularity Spectrum of Fractal Signals from Wavelet Analysis:Exact Results[J].J.Statistical Phys.,1993,70(3/4):635-675.
  • 8马丽萍,石炎福,余华瑞.含噪声混沌信号的小波去噪方法研究[J].信号处理,2002,18(1):83-87. 被引量:30
  • 9赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997.39-53.

二级参考文献5

共引文献105

同被引文献132

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部