期刊文献+

结构参量对脉冲高斯光束布拉格衍射特性的影响 被引量:5

Influences of Geometry Parameter on the Bragg Diffraction by Volume Gratings of a Pulsed Gaussian Beam
原文传递
导出
摘要 利用二维耦合波理论,研究了体光栅对时间和空间都为高斯型分布的脉冲激光光束的衍射性质,得到了衍射和透射光振幅的解析表达式.讨论了体光栅的结构参量对衍射光束的空间和频谱强度分布以及衍射效率的影响.结果表明,体光栅的波长选择带宽和衍射光束带宽随着结构参量的增大而增大,衍射效率随着入射脉冲时间宽度的增大而增大,并趋于定值,结构参量值越小,达到饱和的速度越慢,饱和值越大. The diffraction properties of a volume grating for a pulsed laser beam with Gaussian-profile both in time and space domain are studied, using two-dimensional (2D) coupled-wave theory. Analytical expressions for the spatial and spectral profiles of the transmitted and diffracted beams are obtained. The influences of geometry parameter on the Bragg diffraction properties and the diffraction efficiency of the pulsed Gaussian beam are discussed. It is shown that the Bragg selectivity bandwidth and the diffraction bandwidth of volume gratings are broadened when geometry parameter g increases. The diffraction efficiency increases when pulse duration increases and trends to a saturated value, the smaller the geometry parameter g is, the slower the saturating velocity is, and the larger the saturation value is.
出处 《中国激光》 EI CAS CSCD 北大核心 2006年第11期1517-1521,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(60177106) 国家科学技术部(2002CCA03500)资助项目
关键词 衍射与光栅 布拉格衍射 耦合波理论 脉冲高斯光束 体光栅 diffraction and gratings Bragg diffraction coupled wave theory pulsed Gaussian beam volume gratings
  • 相关文献

参考文献9

  • 1S. D. Wu, T. K. Gaylord, E. N. Glytsis et al.. Angular sensitivities of volume gratings for substrate-mode optical interconnects [J]. Appl. Opt. , 2005, 44(21):4447-4453
  • 2H. Kogelnik. Coupled wave theory for thick hologram gratings[J]. Bell Syst. Technol. J. , 1969, 48(9):2909-2947
  • 3M. G. Moharam, T. K. Gaylord, R. Magnusson. Bragg diffraction of finite beams by thick gratings [J]. J. Opt. Soc.Am. , 1980, 70(3):300-304
  • 4P. Boffi, J. Osmond, D. Piccinin et al.. Diffraction of optical communication Gaussian beams by volume gratings: comparison of simulations and experimental results [J]. Appl. Opt. , 2004,43(19) : 3854-3865
  • 5R. S. Chu, J. A. Kong. Diffraction of optical beams with arbitrary profiles by a periodically modulated layer [J]. J. Opt.Soc. Am. , 1980, 711(1) :1-6
  • 6X. Yan, B. Yang, B. Yu. Diffraction study of photorefractive hologram under ultrashort pulse readout [J]. Optik, 2004, 115(11) :512-516
  • 7Y. Ding, D. D. Nolte, Z. Zheng et al.. Bandwidth study of volume holography in photorefractive InP: Fe for femtosecond pulse readout at 1.5 μm [J]. J. Opt. Soc. Am. B, 1998, 15(11) :2763-2768
  • 8Tyn Myint U. Partial Differential Equations of Mathematical Physics [M]. New York: American Elsevier Pub. Co. , 1973.62-68
  • 9D. S. Smith, H. D. Riccius, R. P. Edwin. Refractive indices of lithiumniobate [J]. Opt. Commun., 1976, 17(3):332-335

同被引文献55

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部