期刊文献+

基于改进贝叶斯模型的中文邮件分类算法 被引量:7

Algorithm of Chinese Mail Classification Based on Improved Bayesian Model
在线阅读 下载PDF
导出
摘要 通过分析常见的贝叶斯分类方法和实现模型,提出了一种适用于中文邮件的分类算法——基于混合模型的最小风险贝叶斯方法。混合模型将二项独立模型和多项式模型相结合,提高邮件分类的查全率,同时,在此基础上应用最小风险贝叶斯方法,进一步提高准确率。实验表明,应用改进的方法可以得到更准确的邮件分类效果。 With studying some popular methods and models for Bayesian approach,one kind of text classificatory algorithm the paper proposed a new algorithm which was fit for Chinese mails,risk minimization Bayes based on hybird model.The hybird model unified Binary Independence Model and Muhinomial Model,improved the recall of mail filter,in the meanwhile,using the risk minimization Bayes on hybird model,improved the precision.The result of experiments demonstrates that the new algorithm gains better performance in mail classification.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第31期97-100,113,共5页 Computer Engineering and Applications
基金 天津市信息化资助项目(042023012)
关键词 邮件分类 中文分词 最小风险 混合模型 贝叶斯 mail classification Chinese word segmentation minimum risk hybrid model Bayes
  • 相关文献

参考文献7

  • 1中国互联网络信息中心.中国互联网络发展状况统计报告[R].北京:中国互联网信息中心,2004.
  • 2YANG Yi-ming,PEDERSEN J O.A comparative study on feature selection in text categorization[C]//Proceedings of ICML-97,14th International Conference on Machine Learning,1997:412-420.
  • 3SAHAMI M,DUMAIS S,HECKEMAN D,et al.A Bayesian approach to filtering Junk E-mail[C]//Proceedings of AAAI-98 Workshop on Learning for Text Categorization,1998,
  • 4RENNIE J D M,SHIH L L,TEEVAN J,et al.Tackling the poor assumption of Na(i)ve Bayes text classifiers[C]//Proceedings of ICML03.Washington DC,USA:[s.n.],2003:616-23.
  • 5LIN Y P,CHEN Z P,YANG X L,et al.Mail filtering based on the risk minimization bayesian algorithm[C]//Proceedings Industrial Systems and Engineering Ⅲ,6th World Multi-conference on Systemics,Cybernetics and Informatics(SCI 2002),2002:282-285.
  • 6MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 7Sendmail.org[Z/OL].http://www.sendmail.org.

共引文献46

同被引文献32

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部