期刊文献+

基于支持向量机的电子邮件分类模型设计 被引量:1

A Model Designed for Email Classification Based on SVM
在线阅读 下载PDF
导出
摘要 本文就目前电子邮件的数量越来越多,人们急需一种分类机制,设计了基于支持向量机的电子邮件分类模型,有效的对电子邮件进行分类,并可对垃圾邮件进行过滤。 Because the growing number on the e - mail, people need an efficient classification mechanism, We designed an Email Classification model Based on SVM, and it can also filtrate Spain.
出处 《信息技术与信息化》 2006年第5期89-90,共2页 Information Technology and Informatization
关键词 支持向量机 电子邮件 分类 SVM Email Classification
  • 相关文献

参考文献4

二级参考文献41

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2黄萱菁.大规模中文文本处理[D]博士学位论文.上海:复旦大学,1999.
  • 3Langley P,Wayne I,Thompson K.An analysis of Bayesian classifiers[C]. In:Proceedings of the 10th National Conference on Artificial Intelligence,San Jose:California, 1992:223-228.
  • 4David D Lewls.Feature Selection and Feature Extraction for Text Categorization[C].In:Proceedings of Speech and Natural Language Workshop.
  • 5Mehran Sahami, Susan Dumais, David Heckerman et al.A Bayesian Approach to Filtering Junk E-mail[C].In;Papers from AAAI Workshop on Learning for Text Categorization,Madison,Wisconsin,1998:55-62.
  • 6边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 7Han E H,Karypis G .Centroid-based Document Classification Algorithms:Analysis & Experimental Results.Technical Report TR-00-017,Department of Computer Science,University of Minnesota,Minneapolis.http://www.cs.umn .edu/~karypis,2000
  • 8Yang Y,Liu X.A Re-examination of Text Categorization Methods.In 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'99),1999:42-49
  • 9McCallum A,Nigam K.A Comparison of Event Models for Naive Bayes Text Classification.Madison,WI:In AAAI-98 Workshop on Learning for Text Categorization,1998:41-48
  • 10M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.

共引文献133

同被引文献12

  • 1郑丽英,王海涌,王霞.基于聚类和粗糙集的智能邮件过滤系统研究[J].甘肃科学学报,2005,17(1):73-76. 被引量:5
  • 2De Vel, O. Mining E-mail Authorship. Proceeding of Workshop on Text Mining[ C]. ACM Inter- national Conference on Knowledge Discovery and Data Mining, 2000. 89-96.
  • 3O. de Vel , A. Anderson , M. Corney , G. Mohay. Mining e- mail Content for Author Identification Forensics [ J ]. ACM SIGMOD Record,2001. 30(4) : 56-60.
  • 4Zhong. N, Matsunaga. T, Liu. C. A Text Mining Agents Based Architecture for Personal E - mail Filtering and Management[ C ]. Proceeding of Third International Conference on Intelligent Data Engineering and Automated Learning, 2002. 330 - 334.
  • 5Blake, C. , & Pratt, W. Better Rules, Few Features: a Semantic Approach to Selecting Features from Text [ C ]. Proceedings of the 2001 IEEE International Conference on Data Mining,2001. 60-64.
  • 6Steffen Bickel, Tobias Scheffer. Learning from Message Pairs for Automatic Email Answering. Proceeding of European Conference on Machine Learning[ C]. 2004. 88 -91.
  • 7H. Murakoshi, A. Shimazu, and K. Ochimizu. Construction of Deliberation Structure in Email Communication [ C ]. Proceedings of the Conference of the Pacific Association for Computational Linguistics, 1999. 16 - 28.
  • 8Bryan Klimt and Yiming Yang. The Enron Corpus: a New Dataset for Email Classification Research [ C ]. The 15th European Conference on Machine Learning. 2004.217 -226.
  • 9Mamata Jenamani, Pratap K. J. Mohapatra, Sujoy Ghose [ J ]. A Stochastic Model of E - customer Behavior. Electronic Comerce Research and Application. 2003. 30 -45.
  • 10Amit Bhatnagar, Sanjoy Ghose. A Latent Class Segmentation Analysis of E - shoppers [ J ]. Journal of Business Research. 2004, 5(7) :758 -767.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部