期刊文献+

两平移一转动并联机构奇异位形分析

Singularity Configuration Analyses of a Parallel Mechanism with Two Translational and One Rotational Degree of Freedom
在线阅读 下载PDF
导出
摘要 介绍一种两平移一转动并联机构及其在中医推拿方面的应用,从机构的位置反解出发求出该并联机构的雅可比矩阵,利用雅可比矩阵法系统地讨论了该并联机构的三类奇异位形,为该机构的实际应用提供理论依据。 A parallel mechanism with two translational and one rotational degree of freedom and its utility in Chinese massage were introduced. Jacobian matrix was obtained with the help of inverse solutions. Singularity configuration was discussed by using the method of Jacobian matrix. It provides a theoretical base for the practical uses of the mechanism.
出处 《机床与液压》 北大核心 2006年第10期10-12,共3页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(503707) 福建省高等学校科技项目(OAJ04231)
关键词 并联机构 串并联机器人 中医推拿 奇异位形 Parallel mechanism Series- parallel manipulator Chinese massage Singularity configuration
  • 相关文献

参考文献5

二级参考文献9

  • 1马履中,王劲松,杨启志,尹小琴,沈惠平,谢俊.基于一种新型并联机构的中医推拿机器人[J].中国机械工程,2004,15(16):1475-1478. 被引量:13
  • 2Richard M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florida: CRC Press, 1994
  • 3Gosselin C, Angeles J. Singularity analysis of closed loop kinematic chains. IEEE Transactions on Robotics and Automation, 1990, 6(2): 281-290
  • 4Merlet J P. Singular configuration of parallel manipulators and grassman geometry. International Journal of Robot Research, 1989, 8(5): 45-56
  • 5Kieffer J. Differential analysis of bifurcations and isolated singularities for robots and mechanisms. IEEE Transactions on Robotics and Automation, 1994,10(1): 1- 10
  • 6Boothby W M. An Introduction to Differentiable Manifolds and Riemannian Geometry. London: Academic Press,1986
  • 7Park F C, Kim J W. Manipulability and singularity analysis of multiple robot systems: A geometric approach. In:Processings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 1998
  • 8金琼,杨廷力.一类新型三平移并联机器人机构的位置分析[J].东南大学学报(自然科学版),2001,31(5):33-38. 被引量:24
  • 9尹小琴,马履中.基于影响系数的并联机器人机构运动分析[J].江苏大学学报(自然科学版),2002,23(4):43-46. 被引量:13

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部