期刊文献+

基于离散小波变换提取脑机接口中脑电特征 被引量:20

Extracting EEG Feature in Brain-computer Interface Based on Discrete Wavelet Transform
在线阅读 下载PDF
导出
摘要 在脑机接口中,针对脑电特征提取利用单一种类信息、使用数据量大、分类性能较差等缺点,提出一种新颖的基于离散小波变换的方法。分析了小波变换特征提取的特点和特征表示方式,用Daubechies类db4小波函数对脑电信号进行6层分解,抽取小波变换各子带关键的部分逼近系数、小波系数、小波子带系数均值组成特征向量。以分类正确率为指标检验了提取特征的性能。实验结果表明,这种方法能够利用少量数据提取脑电信号本质特征,具有较高的分类性能,为利用脑电识别人的不同意图提供了快速而有效的手段。 In brain-computer interfaces (BCIs), a novel method of extracting electroencephalography (EEG) features based on discrete wavelet transform (DWT) was proposed. The method aims at solving problems such as single information is used, large amount of data are required and the classification performance is low in BCIs. The characteristic of extracting features with wavelet transform and some representation manners of features were analyzed. The EEG signal was decomposed to six levels by Daubechies db4 wavelet function. A part of key approximation coefficients, wavelet coefficients and coefficient averages of each wavelet subband were extracted and formed a feature vector. The classification performance of extracted features was tested by an index called correct classification rate. The experiment results showed that the proposed method could extract substantial features using fewer data and displayed high classification performance. The method offers a fast and effective measure for recognizing human different intentions by EEG.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第5期518-522,共5页 Chinese Journal of Biomedical Engineering
关键词 脑机接口 小波变换 脑电 特征提取 brain-computer interface (BCI) wavelet transform (WT) electroencephalography (EEG) feature extraction
  • 相关文献

参考文献11

  • 1程明,任宇鹏,高小榕,王广志,季林红,高上凯.脑电信号控制康复机器人的关键技术[J].机器人技术与应用,2003(4):45-48. 被引量:38
  • 2Blankertz B,Müller KR,Curio G,et al.The BCI competition 2003:progress and perspectives in detection and discrimination of EEG single trials[J].IEEE Trans Biomed Eng,2004,51 (6):1044-1051.
  • 3Wolpaw JR,Birbaumer ND,McFarland J,et al.Brain-computer interfaces for communication and control[J].Clin.Neurophysiol,2002,113(6):767-791.
  • 4Bostanov W.BCI competition 2003-Data Sets Ⅰb and Ⅱb:feature extraction from Event-Related brain potentials with the continuous wavelet transform and the t-Value sealogram[J].IEEE Trans Biomed Eng,2004,51(6):1057-1061.
  • 5Brett DM,Justin WH,Sebastian S.BCI Competition 2003-Data Set Ⅰa:combining gamma-band power with slow cortical potentials to improve single-trial classification of electrooncephalographic signals[J].IEEE Trans Biomed Eng,2004,51(6):1052-1056.
  • 6Blanchard G,Blankertz B.BCI Competition 2003-Data Set Ⅱa:spatial patterns of self-controlled brain rhythm modulations[J].IEEE Trans Biomed Eng,2004,51(6):1062-1066.
  • 7Weiskopf N,Mathiak K,Simon WB,et al.Principles of a braincomputer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)[J].IEEE Trans Biomed Eng,2004,51(6):966-970.
  • 8Choi Kyoung ho,Minoru SASAKI.Brain-Wave bio potentials based mobile robot control:wavelet-neural network pattern recognition approach[A].In:Proceedings of the IEEE International Conference on Systems,Man and Cybernetics[C].2001.322-328.
  • 9Donchin E,Spencer KM,Wijesinghe R.The mental prosthesis:Assessing the speed of a P300-based brain-computer interface[J].IEEE Trans Rehab Eng,2000,8(2):174-179.
  • 10Dornhege G,blankertz B,Curio G.Speeding up classification of multi-channel brain-computer spatial patterns for slow cortical potentials[A].In:Proceedings of the 1st Intertional IEEE EMBS Conference on Neural Engineering[C].2003,594-597.

共引文献40

同被引文献178

引证文献20

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部