期刊文献+

基于自适应神经网络的芳烃异构化过程建模 被引量:4

Aromatic Hydrocarbon Isomerization Process Modeling Based on Adaptive Artificial Neural Network
在线阅读 下载PDF
导出
摘要 针对芳烃异构化过程(AH IP)中影响对二甲苯(PX)产率的因素众多且复杂等特点,提出一种自适应神经网络(Adaptive ANN)以建立AH IP的各因素与PX产率的关联模型。Adaptive ANN将样本分成训练样本和校验样本,并设计过拟合判据参数。通过训练样本对网络进行训练,训练过程中以模型对校验样本的预测性能为指标,通过过拟合判据参数的计算自适应地在获得具有最佳预测性能模型时终止网络训练,克服了传统的神经网络以模型的拟合精度为指标,造成训练时间过长和过拟合等缺点。 According to the character of aromatic hydrocarbon isomerization process (AHIP)that there are many factors influencing the productive ratio of p-xylene (PX)in AHIP, a novel adaptive artificial neural network (ANN)is proposed to model the AHIP. The adaptive ANN divides sample into training sample and testing sample, and an over fitting criterion of model is proposed for the adaptive ANN. When the training sample is employed to train the ANN, the testing sample is applied to surveil the predict ability of ANN during the whole training process. According to the cal- culated result of the over fitting criterion, the adaptive ANN is able to end ANN training immediately after the optimal predict ability model is obtained, and hence to overcome the flaws of the over fitting of traditional ANN model and time-consuming training process. The predict precision of AHIP model obtained by the adaptive ANN is higher than the traditional ANN.
作者 颜学峰
出处 《化工自动化及仪表》 EI CAS 2006年第5期6-8,共3页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(20506003) 上海启明星项目(04QMX1433) 国家"973"计划项目(2002CB312200)
关键词 反传算法 自适应神经网络 芳烃异构化 过拟合判据 建模 back propagation adaptive artificial neural network aromatic hydrocarbon isomerization over fitting criterion modeling
  • 相关文献

参考文献6

二级参考文献18

  • 1姚晓丽.人工神经网络在石油化工过程优化操作中的应用研究,清华大学博士论文[M].北京:清华大学,1992..
  • 2鲞孕誓 阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998..
  • 3Willis M J, et al. Artificial neural networks of process estimation and control [ J ]. Automation, 1992, 39(6):1181-1187.
  • 4焦李成,神经网络系统理论,1992年
  • 5陈宝林,最优化理论与算法,1989年
  • 6陈明,神经网络模型,1995年
  • 7姚晓丽,博士学位论文,1992年
  • 8邓正龙,化工中的优化方法,1992年
  • 9John Neter, William Wasserman, Kutner Michael H.Applied Linear Regression Models. 1st ed. New York..Richard D. Irwin, INC. , 1983.
  • 10Jensen S A, Martens H. Food Research and Data Analysis.Martens H, Russwurn H, eds. New York: Applied Science Puht. , 1983. 253.

共引文献31

同被引文献26

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部