期刊文献+

一种有效的多目标混合遗传算法 被引量:2

An effective hybridized genetic algorithm for solving multi-objective optimization problems
在线阅读 下载PDF
导出
摘要 设计了一种基于支配关系下的局部搜索方法,将此局部搜索方法嵌入到多目标遗传算法中,从而提出一种有效的求解多目标优化问题的混合遗传算法。为加速遗传算法在全局优化问题上的收敛性,发挥传统数值优化算法在计算速度与计算精度上的优势,在遗传算法中镶嵌一个多目标线搜索算子。线搜索算子与遗传算法中的选择算子、交叉算子和变异算子共同作用,使全局搜索和局部搜索都能够很好的实现。数值实验表明,该混合遗传算法能求得问题的数量更多、分布更广的Pareto最优解。 A new local searching method based on dominance is presented , by joining the local searching method into the multi-objective optimization genetic algorithm , so a hybridized algorithm is proposed for solving multi-objective optimization problem. To accelerate astringency of genetic algorithm in global aid fatigue optimization and bring tradition numerical optimization in calculation speed and precision into play, a multi-objective line search operator is been set in genetic algorithm. The multi-objective line search operator interacts with selected operator, crossover operator and mutation operator, making global searching and local searching be well actualized. The numerical experiments show that this algorithm can find more and wider Pareto-optimal solutions than the original one.
出处 《天津工程师范学院学报》 2006年第3期24-26,35,共4页 Journal of Tianji University of Technology and Education
关键词 多目标优化 遗传算法 PARETO最优解 multi-objective optimization genetic algorithm Pareto-optimal solution
  • 相关文献

参考文献2

  • 1孙文瑜,徐成贤,朱德通.最优化方法[M].北京:高等教育出版社,2005.
  • 2玄光南 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..

共引文献43

同被引文献13

  • 1熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 2李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 3孙小强,张求明.一种基于粒子群优化的多目标优化算法[J].计算机工程与应用,2006,42(18):40-42. 被引量:17
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings IEEE International Conference on Neural Networks,USA,1995: 1942-1948.
  • 5Coello Coello C A,Lechuga M S.MOPSO:A Proposal for Multiple Objective Particle Swarm Optimization[C]//IEEE Congress on Evolutionary Computation ( CEC- 2002 ), Honolulu, Hawaii, USA, 2002 : 1051-1056.
  • 6Zitzler E.Evolutionary algorithms for multi-objective optimization: methods and applications[D].Swiss Federal Institute of Technology, Zurich, 1999.
  • 7Zitzler E,Ded K,Thiele LComparison of multiobjective evolutionary algorithms : empirical results [J].Evolutionary Computation, 2002,8 (2): 173-195.
  • 8Coello Coello C A,Pulido G T,Lechuga M S.Handling muhiple objectives with particle swarm optimization [J].IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 256-279.
  • 9JORG F. An efficient interior-point method for convex multicriteria optimization problems [J]. Mathematics of Operations Research, 2006,31 (4) : 825-845.
  • 10郑金华.基于Pareto最优的多目标进化算法及其应用[R].北京:中国科学院计算技术研究所,2005.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部