期刊文献+

基于核中心距比值法的入侵检测 被引量:2

Intrusions Detection Using the Ratio of Kernel Central Distance
在线阅读 下载PDF
导出
摘要 为了解决目前许多推广能力强的入侵检测系统训练时间长的问题,提出了一种不需要花费时间训练,同时又具有推广能力的入侵检测方法。该文利用核方法,巧妙地对非线性可分的入侵检测数据进行分类,提出了利用核中心距离比值法进行入侵检测的框图。用系统调用执行迹数据仿真的结果表明,核中心距比值分类法不但节省训练时间,而且检测性能比较理想。 In order to decrease the long training time for most good generalizablc intrusion detection system, a new intrusion detection method using ratio of kernel central distance (RKCD) which needs no training time and has good generalization ability is presented. The nonlinear separable intrusion data is classified using kernel method. Then the framework of the system using RKCD is introduced. The simulation results on system call traces show that this method performs well, saves the training time at the mean time.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第18期122-124,共3页 Computer Engineering
基金 国家"十五"军事通信预研项目
关键词 网络安全 入侵检测 核方法 Network security Intrusion detection Kernel method
  • 相关文献

参考文献8

  • 1Denning D E.An Intrusion Detection Model[J].IEEE Trans.on Software Engineering,1987,13(2):222-232.
  • 2Kumar G.Classification and Detection of Computer Intrusions[D].Purdue University,1995.
  • 3Haeseleer P.An Immunological Approach to Change Detection:Theoretical Results[C].Proc.of the 9th IEEE Computer Security Foundations Workshop,Dromquinna Manor,County Kerry,Ireland,1996:10-12.
  • 4Tan K.The Application of Neural Networks to UNIX Computer Security[C].Proceedings of the IEEE International Conference on Neural Networks,1995:476-481.
  • 5饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 6Scholkopf B,Mika S,Burges C,et al.Input Space vs.Feature Space in Kernel-based Methods[J].IEEE Transactions on Neural Networks,1999,10(5):1000-1017.
  • 7焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法[J].电子学报,2001,29(3):383-386. 被引量:48
  • 8Forrest S,Perrelason A S,Allen L,et al.Self-nonself Discrimination in a Computer[C].Proceedings of the IEEE Symposium on Research in Security and Privacy,Los Alamitos,1994:202-212.

二级参考文献8

  • 1[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 2[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 3[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 4[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 5[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 6[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.
  • 7Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期
  • 8阎平凡.对多层前向神经网络研究的进一步看法[J].电子学报,1999,27(5):82-85. 被引量:25

共引文献181

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部