期刊文献+

一种快速的在线SVM多用户检测算法 被引量:3

A Fast Online SVM Algorithm for Multi-user Detection
在线阅读 下载PDF
导出
摘要 基于传统支持向量机的多用户检测算法运算量大、耗时久,无法满足实时性要求。该文提出了一种快速的在线支持向量机多用户检测算法。该算法利用KKT条件判别实时增加的训练序列并构造当前训练样本集,从而能够有效地减少训练样本大小,加快训练速度。仿真实验表明,该算法在不影响分类效果的情况下大大加快了训练速度,且用于分类的支持向量较少,同时性能与传统支持向量机算法相当且明显优于MMSE(RLS)多用户检测器。 The runtime of conventional SVM-MUD is too long to satisfy the requirement of real-time application. A fast algorithm based on online training of SVM (FOSVC) for multiuser detection is proposed in the paper. The algorithm distinguishes new added samples and constructs the current training data set using KKT condition in order to reduce the size of training samples. As a result, the training speed is effectively increased. Simulation results illustrate that the algorithm has a faster training speed and a smaller number of support vectors preserving the same quality of separating hyperplane. The performance of the FOSVC detectors is pretty much the same thing as that of SVM detectors, and much better than that of MMSE detectors.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第8期1386-1390,共5页 Journal of Electronics & Information Technology
基金 国家863计划(2003AA103710)资助课题
关键词 CDMA 在线支持向量机 多用户检测 快速算法 CDMA, Online SVM, Multiuser detection (MUD), Fast algorithm
  • 相关文献

参考文献15

  • 1Verdu S.Multiuser Detection[M].London:Cambridge University Press,1998:154-387.
  • 2张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 3Madhow U,Honing M.MMSE interference suppression for direct-sequence spread spectrum CDMA[J].IEEE Trans.on Communications,1998,46(8):3178-3188.
  • 4Host-Madsen A,Kyung-Sean Cho.MMSE/PIC multiuser detection for DS/CDMA systems with inter-and intra-cell interference[J].IEEE Trans.on Communications,1999,47(2):291-299.
  • 5Kechriotis G,Manolakos E S.Hopfield neural network implementtation in the optimal CDMA multiuser detector[J].IEEE Trans.on Neural Networks,1996,NN-7(1):131-141.
  • 6Vapnik V.Statistical Learning Theory[M].New York:WileyInterscience Publication,1998:401-491.
  • 7Nello C,John S T.An Introduction to Support Vector Machines[M].London:Cambridge University Press,2000:93-122.
  • 8Gong X H,Kuh A.Support vector machine for multiuser detection in CDMA communications[A].Conference Record of the Thirty-Third Asilomar Conference on Signals,Systems,and Computers[C].Vol.1,24-27 Oct.,1999:680-684.
  • 9周伟达,张莉,焦李成.自适应支撑矢量机多用户检测[J].电子学报,2003,31(1):92-97. 被引量:9
  • 10刘枫,张太镒,孙建成.基于修改核函数的RLS-SVM多用户检测算法[J].电子与信息学报,2003,25(8):1130-1134. 被引量:3

二级参考文献18

  • 1张贤达 保铮.通讯信号处理[M].北京:国防工业出版社,2000.420-482.
  • 2[1]B. Aazhang, B. Paris, G. Orsak, Neural networks for multiuser detection in CDMA communication, IEEE Trans. on Communications, 1992, 40(7), 1212-1222.
  • 3[2]C. Burges, A tutorial on support vector machines for pattern recongition, Data Mining and Knowledge Discovery, 1998, 2(2), 121-167.
  • 4[3]U. Madhow, M. Honing, MMSE interference suppression for direct-sequence spread-spectrum CDMA, IEEE Trans. on Communications, 1994, 42(12), 3178-3188.
  • 5[4]U. Madhow, MMSE interference suppression for timing acquisition and demodulation in directsequence CDMA systems, IEEE Trans. on Communications, 1998, 46(8), 1065 1075.
  • 6[5]G. Proakis, Digital Communication, Third Edition, USA: McGraw-Hill, 1995, 758-833.
  • 7[6]S. Rappaport, Wireless Communications Principles and Practice, USA, Prentice-Hall, 1996, 177181.
  • 8[7]S. Keerthi, S, Shevade, C. Bhattacharyya, K. Murthy, A fast iterative nearest point algorithn for support vector machine classifier design, IEEE Trans. on Neural Networks, 2000, 11 (1), 124-136.
  • 9B. Aazhang, B. Peter, Neural network for multiuser detector in CDMA communications, IEEE Trans. on Comm., 1992, COM-40(7), 1212-1222.
  • 10G. Kechriotis, E. S. Manolakos, Hopfield neural network implementation in the optimal CDMA multiuser detector, IEEE Trans on. Neural Networks, 1996, NN-7(1), 131-141.

共引文献14

同被引文献22

  • 1刘双平,闻翔,王志刚.色噪声中低信噪比单音正弦信号的频率估计[J].系统工程与电子技术,2007,29(6):866-869. 被引量:2
  • 2HAYKIN S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 20O5
  • 3Mitola J. Cognitive radio: an integrated agent architecture for software defined radio. Royal Institute of Technology, 2000
  • 4Peha J M. Approaches to spectrum sharing.IEEE Communications Magazine, 2005(2): 10~11
  • 5Proakis J. Digital Communications, 3rd edition, Mc Graw Hill
  • 6Urkowitz H. Energy detection of unknown deterministic signals. In: Proceedings of IEEE,1967,55(4): 223-231
  • 7Digham F F. On the energy detection of unkown signals over fading channels. In: Proceedings of IEEE Intemation Conference on Communications(ICC '03)
  • 8Gardner W A. Signal interception: a unifying theoretical framework for feature detection. IEEE Trans On Communications, 1988, 36(8)
  • 9Vapnik V, Mukherjee S. Support vector method for multivariate density estimation. Advances in Neural Information Processing Systems, MIT Press 4, 2000
  • 10Ebrahimzadeh A, Seyedin S A. Identification of signal types using SVM in fading environments. In: Proceedings of ICEE, 2006

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部