期刊文献+

基于神经网络的潜在通路分析 被引量:3

Sneak Circuit Analysis Based on Neural Network
在线阅读 下载PDF
导出
摘要 针对传统潜在通路分析过程复杂、劳动量大的缺陷,提出了基于神经网络的潜在通路分析。神经网络的输入为系统元件的定性状态组合,输出为预测实现功能组合。利用元件与设计功能之间的关系,形成神经网络训练样本。经过训练后,神经网络预测所有元件状态组合实现的功能,然后通过与设计功能的比较,确定电路的潜在通路。经仿真验证,此方法进行潜在通路分析时的正确率达到了92%,而且分析的工作量比较小。 The paper presented a novel approach of sneak circuit analysis based on neural network, which inputs were the vectors of qualitative states of components of system and outputs were the vectors of designedly functional combination. The novel approach can overcome the weaknesses of conventional methods of sneak circuit analysis, such as the complexity of analysis and laborious analysis process. The relations between components of circuit and designed functions generated the samples which were used to train neural network, the trained neural network was used to predict the functions of circuit with a given switch state vector. The sneak circuit can be discovered by comparing the predicted functions designed ones. The simulation revealed that the legitimacy of the approach is more than 92 percent, and the workloads were reduced greatly.
出处 《宇航学报》 EI CAS CSCD 北大核心 2006年第3期474-477,共4页 Journal of Astronautics
关键词 潜在通络分析 神经网络 定性电阻 功能对比 Sneak circuit analysis Neural network Qualitative resistance Function comparison
  • 相关文献

参考文献11

  • 1Frank Ellis Walkers.Sneak circuit analysis automation[J].1989Proceedings Annual Reliability and Maintainability Symposium.1998:356-362
  • 2James L.Vogas.The complementary roles of simulation and sneak analysis[J].1994 Proceedings Annual Reliability and Maintainability Symposium.1994:124-131
  • 3任立明.潜在电路及潜在电路分析技术——潜在电路分析技术之一[J].质量与可靠性,1998(2):31-34. 被引量:15
  • 4Price C J,Snooke N,Landry J.Automated sneak identification[J].Artificial Intelligent,1998,9(4):423-427
  • 5Price C J.AutoSteve:Automated electrical design analysis[J].14th European Conference on Artificial Intelligent,2000:456-460
  • 6李学锋,钱玲.航天控制系统潜在分析技术应用研究[J].航天控制,2000,18(1):26-30. 被引量:14
  • 7Bachisio Dore.New development on automation of sneak analysis[J].1994 Proceedings Annual Reliability and Maintainability Symposium,1994:222-227
  • 8Neal Snooke,Chris Price.Challenges for Qualitative Electrical Reasoning in Automotive Circuit Simulation.1998 Proceedings Annual Reliability and Maintainability Symposium,1998:582-589
  • 9马清亮 胡昌华 胡书海.定性仿真与功能标记相结合的自动潜在电路分析[J].Proceedings of the 3rd World Congress on Intelligent Control and Automation,2000,:347-350.
  • 10易继锴 侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2001..

二级参考文献1

共引文献35

同被引文献54

  • 1郑治仁.氢爆炸事故十四例[J].Aerospace China,1999,0(12):12-14. 被引量:6
  • 2鲍培明.基于BP网络的模糊Petri网的学习能力[J].计算机学报,2004,27(5):695-702. 被引量:87
  • 3谢亮.苏联的旋风号与天顶号火箭[J].世界导弹与航天,1989(11):26-28. 被引量:1
  • 4宗群,马宏波,王中海.基于NNFPN模型的电梯故障诊断方法的研究[J].控制与决策,2005,20(3):341-344. 被引量:18
  • 5Frank Ellis Walkers. Sneak Circuit Analysis Automation [ C ]. Annual Reliability and Maintainability Symposium, 1989: 356-362.
  • 6Bachisio Dote. New Development on Automation of Sneak Analysis [ C ], Annual Reliability and Maintain- ability Symposium, 1994:222-227.
  • 7Wu Xiaoqiang . A Hybrid Approach in Intelligent Work- flow Modelling Using Petri Nets and Neural Network for Inter-Organizational Cooperation [ C ].The 8th International Conference On Computer Supported Cooperative Work in Design Proceedings. 2003 : 307-311.
  • 8Alexandre Abellard. Mohamed Moncef, Moez Bouchouicha. A Petri Net Modeling of an Adaptive Learning Control Applied to an Electric Wheelchair[ C], Proceedings IEEE International Symposium on Computational Intelligence in Robotics and Automation, June 27-30, 2005, Espoo, Finland: 397-402.
  • 9Kotaro Hirasawa, Masanao Ohbayashi, Singo Sakai, and Jinglu Hu. Learning Petri Network and Its Application to Nonlinear System Control[ J ]. IEEE Transcation on Systems, Man and Cybernetics--Part B : Cybernetics, 1998, 28(6) : 71-789.
  • 10黎剑源,丘东元,张波.n阶谐振开关电容变换器潜电路图论分析法[J].中国电机工程学报,2008,28(3):53-59. 被引量:16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部