期刊文献+

物理真随机码发生器随机性分析 被引量:2

Randomicity of Physical Random Number Generator
在线阅读 下载PDF
导出
摘要 对物理随机码发生器的物理参量与其产生的随机码序列的随机性关系进行了分析·根据量子保密通信对随机码序列的随机性的要求,分析了常见的随机码发生器产生的随机码的随机性,给出了利用随机高斯噪音经比较器产生随机码的随机码发生器的随机性公式· The absolute security of quantum cryptography system was guaranteed by two aspects: no eavesdropping channel and no repetition true random codes. The randomicity of physical random number generator based on Guass noise was discussed. The relation of its correlation coefficient and entropy with the physical parameter were calculated and how to get the best performance was discussed. It is useful for developing the true random number generator used in the quantum cryptography systems.
出处 《光子学报》 EI CAS CSCD 北大核心 2006年第7期1086-1089,共4页 Acta Photonica Sinica
基金 国家973科研计划(2001CB309300) 广东省科研基金(2003A1030405) 广州市科研基金(1999Z03501)资助项目
关键词 量子保密通信 真随机码 信息熵 相关系数 Quantum cryptography systems True random number Correlation coefficient Entropy Quantum cryptography systems True random number Correlation coefficient Entropy
  • 相关文献

参考文献13

二级参考文献29

  • 1卢铁成.信息加密技术[M].成都:四川科学技术出版社,1989..
  • 2P.E.Allen,D.R.Holberg. CMOS Analog Circuit Design,2nd,Publishing House of Electronics Industry,2002.6
  • 3L. Sumanen,M.Waltari,K.Halonen. A Mismatch Insensitive CMOS Dynamic Comparator for Pipeline A/D Converters,in Proc. ICECS ' 00,Dec.2000,pp.I-32-35.
  • 4A Shoval, D A Johns,and W M Snelgrove, Median-Based Offset Cancellation Cicuit Technique, Proc. IEEE Int.Symup. Circuits and Systems, 1992, vol. 4, pp. 2033-2036
  • 5M.Bucci,L. German, R.Luzzi,P.Tommasino,A.Trifiletti,M.Varanonuovo. A High Speed Truly IC Random Number Souce for Smart Card Microcontrollers, Electronics, Circuits and Systems, 2002, 9th International Conference on, Sept.2002, 1(15-18): 239-242
  • 6肖国镇等,伪随机序列及其应用,国防工业出版社,1985.辛茜硕士研究生.研究方向为模拟/混合信号集成电路.
  • 7[1]Marsaglia G 1993 Computers & Mathematics with Applications 9 1
  • 8[2]Bennett C H et al 1992 Scientific American 257 50
  • 9[3]Jennewein T, Achleitner U, Weihs G, Weinfurter H and Zeilinger A A Fast and Compact Quantum Random Number Generator (Los Alamos Eprint,quant-ph/9912118)
  • 10[4]Martino A J,Morris G M 1991 Appl Opt. 30 981

共引文献52

同被引文献24

  • 1陈志新,唐志列,魏正军,刘景锋,廖常俊,刘颂豪.QKD系统在Breidbart基窃听下BB84协议的信息量研究[J].光子学报,2004,33(12):1469-1472. 被引量:9
  • 2苏晓琴,郭光灿.两种典型的量子通信技术[J].广西大学学报(自然科学版),2005,30(1):30-39. 被引量:9
  • 3LO H K,CHAU H F,ARDEHALI M. Efficient quantum key distribution scheme and a proof of its unconditional security [J]. Journal of Cryptology ,2005,18(2) :133-165.
  • 4WANG Xiang bin. Beating the PNS attack in practical quantum cryptography[J]. Phy Rev Lett,2005,94(23):503-506.
  • 5GOTTESMAN D, PRESKILL J. Secure quantum key distribution using squeezed states[J]. Phys Rev A, 2001,63 (2) :022309.
  • 6OU Z Y. Multi photon interference and temporal distinguishability of photons[DB/OL]. ( 2007-08-24 ) [2007-09-01]. http://arxiv. org/abs/0708. 0077v1.
  • 7BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers Systems and Signal Processing, 1984: 175-179.
  • 8BENNETT C H. Quantum cryptography: uncertainty in the service of privaey[J]. Science,1992,257(7) :752-753.
  • 9MAYERS D. Unconditional security in quanlum cryptography [J]. Journal of the ACM,2001,48(3) :351-406.
  • 10方芳.我国量子密码通信网测试成功可检测窃听行为[EB/OL].[2007-12-3].http://tech.sina.com.cn/t/2007-04-03/08381445628.shtml.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部