期刊文献+

拟连续Domain的若干拓扑性质(英文) 被引量:8

Some Topological Properties of Quasicontinuous Domains
在线阅读 下载PDF
导出
摘要 对拟连续Domain D证明了:(1)双拓扑空间(D,σ(D),(D))为两两完全正则空间;(2)若D有可数基,则(max(D),σ(D)max(D))为正则空间当且仅当它为Polish空间;(3)拓扑空间(D,σb(D))为零维Tychonoff空间,其中σb(D)为D上Scott拓扑的b-拓扑。 For a quasicontinuous domain D, we prove that (1) the bitopology space (D,σ(D),ω(D)) is pairwise completely regular, (2) for an ω-quasicontinuous domain D, the maximal points max (D) in its Scott topology inherited from D is regular if and only if it is a Polish space, and (3) the space (D,σb(D)) is zero-dimensional Tychonoff, where σb(D) is the b-topology for the Scott topology on D.
出处 《模糊系统与数学》 CSCD 北大核心 2006年第3期69-76,共8页 Fuzzy Systems and Mathematics
基金 NSFC(10331010) theNationalScienceFundforDistinguishedYoungScholarsandTheResearchFundfortheDoctoralProgramofHigherEducation
关键词 拟连续DOMAIN 两两完全正则 极大点 POLISH空间 b-拓扑 Quasicontinuous Domain Pairwise Completely Regular Maximal Point Polish Space b-topology
  • 相关文献

参考文献19

  • 1Ciesielski K,Flagg B,Kopperman R.Polish spaces,computable approximations,and bitopological spaces[J].Top.and Its Appl.,2002,119:241~256.
  • 2Edalat A,Heckmann R.A computation model for metric spaces[J].Theoret.Comput.Sci.,1998,193:53~73.
  • 3Flagg R C,Koppermann R.Tychonoff poset structure and auxiliary relations[A].Andima,et al.Papers on General Topology and Applications[C].Ann.New York Acad.Sci.,1995,767:45~61.
  • 4Gierz G,et al.Continuous lattices and domains[M].Cambridge University Press,2003.
  • 5Gierz G,Lawson J D,Stralka A.Quasicontinuous posets[J].Houston J.Math.,1983,9:191~208.
  • 6Heckmann R.Power domain constructions[D].Universitat des Saarlandes,1990.
  • 7Kopperman R.Asymmetry and duality in topology[J].Top.and Its Appl.,1995,66:1~39.
  • 8Künzi H P A.Completely regular ordered spaces[J].Order,1990,7:283~293.
  • 9Lawson J D.Order and strongly Sober compactifications[A].Topology and category theory in computer science[C].Oxford Press,1991:179~295.
  • 10Lawson J D.Spaces of maximal points[J].Math.Struct.in Comput.Sci.,1997,7:543~555.

同被引文献53

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部