Minimax Estimation of the Function of Parameters in Normal Distribution
被引量:2
Minimax Estimation of the Function of Parameters in Normal Distribution
摘要
The estimation of the functionθ=exp{αμ+bσ2} of parameters (μ,σ2) in normal distribution N(μ,σ2) is discussed. And when the prior distributions ofμandσ2 are independent, under the loss function L(θ,δ)=(θ-1×δ-1)2, the Bayesian estimation and the existence and computing method on minimax estimation are deeply discussed.
参考文献8
-
1MENG Hong-ling, QIAO Chun-ping, ZHANG Kai-guang. The estimation of the function of prameters in normal distribution[J]. Journal of Zhengzhou University, 2005, 37(2): 38-40.
-
2BRADU D, MUNDLAK L. Estimation in lognormal liner models[J]. JASA, 1970, 65: 198-211.
-
3EVAN I G, SHALION Z. A note on lognormal liner models[J]. JASA, 1974, 69: 779-787.
-
4ANDREW L, RUKHIK R. Improved estimation in lognormalmodels[J]. JASA, 1986, 396:1046-1047
-
5ZELLER A. Bayesian and nonbaysian analysis of lognormal distribution and lognormal regression[J]. SASA,1970, 66: 327-330.
-
6JAMES O, BERGER H M, Statistical Decision Theory[M]. New York: John Wiley & Sons, 1980.
-
7SHELEMYABU A. The Theory of Statistical Inference[M]. New York: Springer-Verlag, 1971.
-
8KALIN. Polya type distribution I[J]. ANN STATIST, 1983, 28: 327-330.
同被引文献18
-
1孟红玲,乔春平,张开广.正态分布参数函数的估计[J].郑州大学学报(理学版),2005,37(2):38-40. 被引量:6
-
2俞钟行.W检验法程序[J].物探化探计算技术,1989,11(3):267-270. 被引量:2
-
3亢效虎,罗纲成,崔胤,王先荣,毛叔其.应用数理统计对胎儿双顶径分布规律的研究[J].兰州大学学报(自然科学版),1995,31(1):84-86. 被引量:1
-
4于向英,孟红玲,张开广.可测函数的K-L信息最小化[J].郑州大学学报(理学版),2006,38(3):28-31. 被引量:2
-
5[1]Bradu D,Mundlak L.Estimation in lognormai liner models[J].JASA,1970,65:198-211.
-
6[2]Evan I G,Shalion Z.A note on lognormal liner models[J].JASA,1974,69:779-787.
-
7[3]Andrew L,Rukhik R.Improved estimation in lognormal models[J].JASA,1986,396:1046-1047.
-
8[4]Zeller A.Bayesian and nonbayesian analysis of lognormal distribution and lognormal regression[J].SASA,1970,66:327-330.
-
9[5]James O,Berger H M.Statistical Decision Theory[M].New York:John Wiley & Sons,1980.
-
10[6]Shelemyabu A.The Theory of Statistical Inference[M].New York:Springer-Verlay,1971.
二级引证文献6
-
1张新育,周世国,杨松华.大样本下偏正态分布参数的假设检验[J].郑州大学学报(理学版),2008,40(4):12-16. 被引量:1
-
2朱昌锋,李引珍.提速条件下铁路货物运到期限计算方法[J].交通运输工程学报,2009,9(5):106-110. 被引量:8
-
3物流[J].中国商贸,2010(12):110-110.
-
4罗江成,陈阳.现代物流条件下铁路货运站货位周转时间探讨[J].高速铁路技术,2015,6(2):6-10.
-
5罗立立.基于数理理论的物流企业决策风险管理研究[J].中国商贸,2010,0(8X):136-137.
-
6ZHU Chang-feng,WANG Qing-rong,LIU Dao-kuan,YE Qian-yun.Forecasting freight volume based on wavelet denoising and FG-Markov[J].Journal of Measurement Science and Instrumentation,2020,11(3):267-275. 被引量:1
-
1ZHENG Liang,LI Wei.Thermoequilibrium statistics for a finite system with energy nonextensivity[J].Chinese Science Bulletin,2011,56(34):3666-3670. 被引量:1
-
2金克勤.“正态分布”的教学设计、实践与反思[J].数学通报,2013,52(3):46-52. 被引量:4
-
3Qun-ying WU.Laws of the Iterated Logarithm for-mixing Random Variables with Normal Distribution[J].Acta Mathematicae Applicatae Sinica,2016,32(2):385-394. 被引量:1
-
4DU Jun-min SUN Ming-fang.An Improved Algorithm for Normal Distribution Structure[J].International Journal of Plant Engineering and Management,2008,13(4):214-219.
-
5于娜.正态分布的学习探讨[J].黑龙江科技信息,2015(34):90-91.
-
6宋述芳,吕震宙.基于鞍点估计的结构系统可靠性分析方法研究[J].中国科学:技术科学,2010,40(3):237-246. 被引量:4
-
7宋述芳,吕震宙.非正态变量可靠性分析的鞍点线抽样方法[J].固体力学学报,2010,31(2):205-210. 被引量:2
-
8Yolanda M. Gomez,Ignacio Vidal.A generalization of the half-normal distribution[J].Applied Mathematics(A Journal of Chinese Universities),2016,31(4):409-424.
-
9张干清,龚宪生.非正态变量情况下基于杂交SAPSO-SFLA的多目标稳健协同优化[J].工程力学,2013,30(5):24-35. 被引量:1
-
10Weiqi LIU,Jinfang LIU,Ruibing QIN.Monitoring Change in the Mean Vector of Multivariate Normal Distribution[J].Journal of Mathematical Research with Applications,2015,35(4):448-462.