期刊文献+

Electrical impedance tomography using adaptive mesh refinement 被引量:1

Electrical impedance tomography using adaptive mesh refinement
在线阅读 下载PDF
导出
摘要 In electrical impedance tomography (EIT), distribution of the internal resistivity or conductivity of an unknown object is esti- mated using measured boundary voltage data induced by different current patterns with various reconstruction algorithms. The reconstruction algorithms usually employ the Newton-Raphson iteration scheme to visualize the resistivity distribution inside the object. Accuracy of the imaging process depends not only on the algorithm used, but also on the scheme of finite element discretization. In this paper an adaptive mesh refinement is used in a modified reconstruction algorithm for the regularized Err. The method has a major impact on efficient solution of the forward problem as well as on achieving improved image resolution. Computer simulations indicate that the Newton-Raphson reconstruction algorithm for Err using adaptive mesh refinement performs better than the classical Newton-Raphson algorithm in terms of reconstructed image resolution. In electrical impedance tomography (EIT), distribution of the internal resistivity or conductivity of an unknown object is esti- mated using measured boundary voltage data induced by different current patterns with various reconstruction algorithms. The reconstruction algorithms usually employ the Newton-Raphson iteration scheme to visualize the resistivity distribution inside the object. Accuracy of the imaging process depends not only on the algorithm used, but also on the scheme of finite element discretization. In this paper an adaptive mesh refinement is used in a modified reconstruction algorithm for the regularized Err. The method has a major impact on efficient solution of the forward problem as well as on achieving improved image resolution. Computer simulations indicate that the Newton-Raphson reconstruction algorithm for Err using adaptive mesh refinement performs better than the classical Newton-Raphson algorithm in terms of reconstructed image resolution.
出处 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期228-232,共5页 上海大学学报(英文版)
基金 Project supported by National Natural Science Foundation of China(Grant No. 60075009)
关键词 electrical impedance tomography mesh refinement reconstruction algorithm exponentially weighted least square criterion.. electrical impedance tomography, mesh refinement, reconstruction algorithm, exponentially weighted least square criterion..
  • 相关文献

同被引文献12

  • 1闫俐,许作良.各向异性电阻抗成像问题的变分正则化方法[J].数值计算与计算机应用,2005,26(4):312-320. 被引量:3
  • 2CHENEY M, ISAACSON D, NEWELL J C. Electrical Impedance Tomography [J]. Society for Industrial and Applied Mathematies, 1999, 41. (1) : 85-101.
  • 3GRIMNES S, MARTINSEN O G Electrical properties of tissure [M]. Bioimpedane and bioelectrieity basics, 2000 : 87-126.
  • 4YASUNO E, KATO H, KINOUCHI Y, Met al. A Fundamental Study on Parameter Estimation of Layerd Local Tissue Impedance for EIT Engineering in Medicine and Biology Society[C]. IEEE-EMBS 2005, 27th Annual International Conference of the 17-18 Jan, 2006:6650-6653.
  • 5TTIGO FLAVIO C , LIMA R G , AMATO M B P. Electrical Impedance tomography Using The Extebded Kalman Filter [J].IEEE Transactions on Biomedical Engineering 2004,51. (1): 72-81.
  • 6HAYKINS.自适应滤波器原理[M].第四版.郑宝玉,等,译.北京:电子工业出版社,2006,11.
  • 7HUANG C N, YU F M, CHUNG H Y. The Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance Tomography Instrumentation and Measurement[J]. IEEE Transactions on ,2008,57 (6) : 1193-1198.
  • 8XU CH, DONG XZH, XT SHI, et al. Comparison of Drive Patterns for Single Current Source EIT in Computational Phantom Bioinformatics and Biomedical Engineering, [C]. 2008. ICBBE 2008, The 2nd International Conference on16-18 May 2008: 1500-1503.
  • 9http://venda, uku. fi/-mvauhkon/MatlabEIT2d.html.
  • 10董秀珍.生物电阻抗成像研究的现状与挑战[J].中国生物医学工程学报,2008,27(5):641-643. 被引量:63

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部