摘要
研究了一类间断系数变分不等式解的奇性,得到了解的先验估计。在解的奇点附近构造了一类有限元网格剖分,根据这种剖分,有限元解具有通常情形(即没有奇性时)的收敛速度。
The singularity of the solution of variational inequalities with coefficients that are dis-continuous across the interface is investigated,a prior estimate is obtained.We also design a netshape of the finite elements around the singular points of the solution.By means of this net,weprove that the approximate solution has the same convergence rate as that without singularity.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1996年第1期21-27,共7页
Acta Scientiarum Naturalium Universitatis Pekinensis
关键词
变分不等式
奇性
有限元
间断系数
variational inequality
singularity
finite element