期刊文献+

多维δ函数及其物理应用 被引量:2

Multi-Dimensional δ Function and Its Physical Applications
在线阅读 下载PDF
导出
摘要 δ函数是人为定义出来的一种分析工具,正因为它在数学上的简单性,才导致了它在物理上被广泛应用于研究质量、能量在空间或时间上高度集中的各种物理现象.它没有通常意义下的“函数值”,但是,当δ函数被当作普通函数参加运算,所得到的数学结论和物理结论是相互吻合的.本文在一维δ函数三种定义的基础上,讨论了多维δ函数的定义,以及多维δ函数的筛选性质、函数分解乘积性质、奇偶性、数乘性质和方差性质.并推广了多维δ函数的三个物理应用. Delta function is a deliberately defined mathematical tool for analysis,which is devoted particularly to illustrating of the physical model of points distribution, and which is widely applied to analyze the high concentration of quality and energy on one point in space or in time in physics. It does not share "function value" in a general sense. However, when it is used as ordinary function for calculation, it makes mathematical conclusions,which correspond to physical ones. Based on three definitions of a dimensional δ function, the definition of multi-dimensional, its screening nature, function decomposition product nature,odevity,the number rides the nature and the variance have been discusses in the present proofed. Its three physical applications have been proofed and illustrated.
出处 《西安工业学院学报》 2006年第2期175-178,共4页 Journal of Xi'an Institute of Technology
关键词 多维δ函数 瞬时脉冲 点分布模型 狄拉克函数 函数性质 multi-dimensional δ function instantaneous pulse selects the distributed model dirac function function nature.
  • 相关文献

参考文献5

二级参考文献6

  • 1Dirac P. History of 20th century physics [M]. New York: Academic Press, 1997. 121~142.
  • 2Dirac P. Lectures on quantum mechanics [M]. New York: Acadcmic Press, 1964.
  • 3Dirac P. The principle of quantum mechanics [M]. Oxford: Clarendon Press, 1930.
  • 4Jammer M. The philosophy of Quantum Mechanics [M]. New York: John wiley & Sons Press, 1974, 62~64.
  • 5Mehra J. Rechenberg H. The Historical Development of Quantum Theory vol 1 Part 2[M]. New York: Spring-Verlag Press, 1982. 533~535, 671~689.
  • 6Hund F. The history of quantum theory [M]. London: First

共引文献4

同被引文献18

  • 1EKWEBELAM C, SEE H. Microstructure investigation of the yielding behaviour of bidisperse magnetorheological fluids[J]. RheolActa, 2009, 48(1)19- 32.
  • 2KEAVENY E E, MAXEY M R. Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids[J]. Journal of Computational Physics, 2008, 227(22):9554-9571.
  • 3CAO J G, HUANG J P, ZHOU L W. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation [J]. Journal of Physical Chemistry B, 2006, 110 (24): 11635-11639.
  • 4MURASHOV V V, PATEY G N. Structure formation in dipolar fluids driven by rotating fields[J].Journal of Chemical Physics, 2000, 112(22) :9828-9833.
  • 5MELLE S, CALEDERON O G, RUBIO M A, et al. Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 102(2) :135-148.
  • 6LI H, PENG X, CHEN W. A micro-to macroscopic analysis for the yield stress of magne torheological Fluids[C]// International Conference on Heterogeneous Materials Mechanics, Jun 21-26, 2004, Chongqing,China. Chongqing: Chongqing University Press, 2004: 276 280.
  • 7MELLE S, CALEDERON O G, FULLER G G, et al. Polarizable particle aggregation under rotating magnetic fields using scattering dichroism[J]. Journal of Colloid and Interface Science, 2002, 247 (1) : 200-209.
  • 8SHEN M, CAO J G, ZHU H T, et al. Van Der Waals interaction in colloidal giant electrorheologieal systems[C]// The 9th International Conference on Electrorheological Fluids and Magnetorheologi.cal Suspensions, Aug 29 Sep 3, 2004, Beijing, China. Beijing: World Scientific, 2005: 156-162.
  • 9LI H, PENG X, CHEN W. Simulation of the chain formation process in magnetic fields[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(7/8) : 653-658.
  • 10吴望一.流体力学[M].北京:北京大学出版社,2000.5

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部