摘要
用双曲正切函数∑i=-ntanhi(ζ)展开法,得到了非线性KdV-Burgers-Kuramoto方程:ut+uux+αuxx+βuxxx+γuxxxx=0的36组行波解.KdV方程、KdV-Burgers方程和KS-KdV方程等的孤波解和行波解可作为特例类推得到.
Using the expansion method of hyperbolic tangent function n∑i=-ntanh^i(ζ) thirty-six groups of traveling-wave solutions to nonlinear Kdv-Burgers-Kuramoto equation ut+uux+αuxx+βuxxx+γuxxxx=0 were obtained in this paper. And the solitary wave solution and traveling-wave solution of KdV equation, KdV-Burgers equation,and KS-KdV equation can be concluded from them as special cases.
出处
《兰州理工大学学报》
CAS
北大核心
2006年第2期150-153,共4页
Journal of Lanzhou University of Technology
关键词
双曲正切函数法
Benney方程
孤波解
行波解
method of hyperbolic tangent function
Benney equation
solitary wave solution
travelingwave solution