期刊文献+

多连通域Voronoi图的算法及数据存储 被引量:2

Algorithm and data structure of multi-connected domain voronoi diagram
在线阅读 下载PDF
导出
摘要 通过对两种主要单连通域Voronoi图算法的剖析,改进初始化算法和数据结构,得到便于工程应用的单连通域Voronoi算法,并将波阵面传播的思想扩展应用到求多连通域的Voronoi图,形成新的多连通域问题算法,从而解决了工程中特别是分层制造技术中Voronoi图应用的一般性问题。 Two main algorithms of single-connected are analyzed, the algorithm of initialization and data structure are improved and the algorthrn is obtained to apply in practice, the idea of wavefront-propagation algorithm is extended to computing multi-connected voronoi diagram. The generic problems in engineering application especially in laminated manufacturing field are solved.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第8期1468-1471,共4页 Computer Engineering and Design
关键词 VORONOI图 算法 多连通域 数据结构 voronoi diagram algorithm multi-connected data structure
  • 相关文献

参考文献18

二级参考文献17

  • 1胡长原,张福炎.复杂形状区域的一种笔划分解算法及其应用[J].计算机辅助设计与图形学学报,1996,8(6):408-414. 被引量:7
  • 2徐建华.图象处理与分析[M].北京:科学出版社,1992..
  • 3陈学彬.HRPS-I激光烧结系统的研究与实现:硕士学位论文[M].武汉:华中理工大学,2000..
  • 4Farouki R T, et al. Offset curves in layered manufacturing[J]. Manufacturing Science and Engineering, 1994, (2).
  • 5Lee D T. Medial Axis Transformation of a planar shape[J].IEEE Trans. on PAMI, 1982,4(4) :363-369.
  • 6Held M. On the Computational Geometry of Pocket Machining[M]. Vol. 500 of Lecture Notes in Computer Science,Springer, Berlin, 1991.
  • 7Aggarwal A, et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon[J]. DIscrete Computer Geometry, 1989,4(6) :591-604.
  • 8Devillers O. Randomization yields simple O(n logn) algorithms for difficult Ω(n) problems[J]. International Journal of Computer Geometry and Applications, 1992, 2(1).
  • 9Chin F, et al. Finding the medial axis of a simple polygon in linear time[A]. Proceeding of the 7^th Canadian Conference on Computer Geometry[C], Quebec City, Canada, 1995.
  • 10Srinivasan V and Nackman R. Voronoi diagrams for multi-ply-connected polygon domains-1 Algorithm[J]. IBM Journal of Research and Development, 1987, 31(3): 361-372.

共引文献98

同被引文献19

  • 1赵吉宾,刘伟军,王越超.多边形OFFSET中无效环的去除算法[J].工程图学学报,2005,26(3):44-49. 被引量:6
  • 2赵吉宾,李爱民,岳震.光固化快速成形技术中的外轮廓等距线填充算法研究[J].中国机械工程,2006,17(9):919-922. 被引量:4
  • 3Ma W C, Wu F C, Ouhyoung M. Skeleton extraction of 3D objects with radial basis functions [C] //Proceedings ofInternational Conference on Shape Modeling and Applications. Los Alamitos: IEEE Computer Society Press, 2003:207-215.
  • 4Oswin A, Franz A, Alberts D, etal. A novel type of skeleton for polygons [J]. Journal of Universal Computer Science, 1995, 1(12), 752-761.
  • 5Oswin A, Franz A. Straight skeletons for general polygonal figures in the plane [C]//Lecture Notes in Computer Science.Heidelberg: Springer, 1996: 117-126.
  • 6Felkel P, Obdr~ dlek S. Straight skeleton implementation [C]//Proceedings of Spring Conference ComputerGraphics. Bratislava: Comenius University Press, 1998 : 210- 218.
  • 7Eppstein D, Erickson J. Raising roofs, crashing cycles, and playing pool: applications of a data structure for findingpairwise interactions [J]. Discrete and Computational Geometry, 1999, 22(4): 569-592.
  • 8Cheng S W, Vigneron A. Motorcycle graphs and straight skeletons[J]. Algorithmica, 2002, 47(2): 1229-1235.
  • 9Das G K, Mukhopadhyay A, Nandy S C, et al. Computingthe straight skeleton of a monotone polygon in O(n logn) time [C] //Proceedings of the 22nd Canadian Conference on Computational Geometry. Winnipeg: MB, 2010:207-210.
  • 10Lee D T. Medial axis transformation of a planar shape [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(4):363-369.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部