期刊文献+

暂态功角稳定不稳定平衡点类型和临界割集数量的对应关系 被引量:15

Relationship between the Number of Critical Cut-sets and the Type of Unstable Equilibrium Point with Respect to Transient Angle Stability
在线阅读 下载PDF
导出
摘要 电力系统暂态功角失稳模式同相关不稳定平衡点密切相关。鉴于电力系统失去暂态功角稳定时总是伴随着电力网络的某个或某些临界割集上支路角度急剧地、过大地增长,人们已经认识到电力网络中存在临界割集与系统模型中存在不稳定平衡点是等价的,并提出了用于电力系统暂态功角稳定分析的割集稳定准则。为了使人们能够放心地、正确地运用与临界割集相关的稳定准则,本文以电力系统结构保留模型为基础,从理论上推导出暂态功角稳定不稳定平衡点为i型的当且仅当事故后电力扩展网络中存在i个临界割集。利用上述结论,可以很容易地将割集稳定准则应用于多群失稳的情况,以消除原准则的保守性。 A transient angle unstable mode of power system closely relates to a controlling unstable equilibrium point (UEP). Angles of branches in critical cutsets change rapidly and largely when the power system loses transient angle stability. People have realized that there exists a certain relation between the critical cutsets and the UEP for structurepreserving power system models and suggested the cutset stability criterion for transient angle stability analysis. For the proper use of the criterion, the relationship between the number of critical cutsets and the type of UEP with respect to transient angle stability is developed based on two stnlcture-preserving power system models. The conclusion that the UEP is type-i iff there exist i critical cutsets in the post-fault network can be easily used to propose a modified cutset stability criterion, which will have less conservation than the original one, for the case of that the post-fault power system exists more than one critical group of generators.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第8期1-6,共6页 Proceedings of the CSEE
基金 国家重点基础研究专项经费项目(2004CB217904) 国家自然科学基金重大项目(50595413)~~
关键词 电力系统 不稳定平衡点 临界割集 暂态功角稳定性 power system unstable equilibrium point(UEP) critical cut-set transient angle stability
  • 相关文献

参考文献17

二级参考文献42

  • 1薛禹胜.运动稳定性量化理论[M].南京:江苏科学技术出版社,..
  • 2Pai M A., Power system stability, north-holland[M].Amsterdam, The Netherlands,1991.
  • 3Chiang H D, Chu C C, Cauley G Direct stability analysis of electrk: power systems using eneagy functions: thorny, applications, and perspective[J].Proceeding of the IEEE,1995, 38(11): 1497-1529.
  • 4Chiang H D, Wu F F, Varraiya P P. A BCU method for direct analysis of power system transient stability analysis[J].IEEE Trans.Trans. Power Systems,1994, FWRS-9(4): 1194-2000.
  • 5Chiung H D, Hirsch M W, Wu F F, Stability region of nonlinear autonomous dymunieal systems[I].IEEE Trans. Auto. Contr, 1988, AC-33(1): 16-27.
  • 6Chiang H D, Wu F F, Varaiya P P. Foundations of the potential eneagy boundary surface method for power system transient stability anaysis[J].IEEE Trans. Circuits & Systems, 1988, CAS-35(6): 712-728.
  • 7Paganini E Lesieuae B C, Geaeric Properties. One-parameter deformatiom, and the BCU method[J]. IEEE Trans. on Circuits and Systems,1999,CAS-46: 760-763.
  • 8Alexader P M, Fouad A A. Power system control and stability[M].IEEE Press, New York, 1994.
  • 9Bailillieul J, Bymcs C I. Geometric critical point analysis of lossless power systems[J]. IEEE Trans. On Circuits and Systems, 1982,CAS-29(11): 724-737.
  • 10Fouad A, Vittal V. Power system transient stability analysis: using the transient energy function method[M]. Prentice-HalL New Jersey, 1991.

共引文献158

同被引文献248

引证文献15

二级引证文献570

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部