期刊文献+

超高速大电流半导体开关实验研究 被引量:13

Experimental investigation of ultrafast and high current semiconductor switch
在线阅读 下载PDF
导出
摘要 利用自行研制的固态半导体开关RSD,采用电容储能方式,研究了RSD的电压响应时间、大电流特性、电流上升率等。在测试RSD的电压响应时间时,得到了25 ns的电压下降曲线。在主电容电压为8kV时,得到峰值为10.1 kA、脉宽为34μs、电流上升率为2.03 kA/μs的大电流脉冲。通过调整主电路,在主电容为3 kV时,得到的电流脉冲峰值为8.5 kA、脉宽为2.5μs、电流上升率为7.2 kA/μs。结果表明,RSD是一种开通快、通流能力强、电流上升率高的大功率半导体开关器件。 Some interesting characteristics of the solid-state semiconductor switch, the reverse switching dynistor(RSD), such as the time of voltage fall, current carrying capability and current rise rate, were investigated under the condition of being the closing switch of capacitive energy storage. A 25 ns voltage-falling time was achieved. When the voltage of main capacitor was 8 kV, the peak value of current pulse was 10.1 kA, pulse width and current rise rate were 34 μs and 2.03 kA/ μs respectively. After adjusting parameters of the main discharge circuit, a current pulse was obtained at peak current of 8.5 kA with current rise rate of 7.2 kA/ μs only when the main capacitor voltage was 3 kV. Experimental results show that RSD is a new type of high power semiconductor switch with fast turn-on, current carrying capability and high current rise rate.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2006年第3期447-450,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金资助课题(50277016 50577028) 高等学校博士点基金资助课题(20050487044) 国家973项目资助课题(5132802)
关键词 半导体开关 RSD 等离子体 大电流 电流上升率 High current carrying copability Semiconductor switch RSD Plasma High current Current rise rate
  • 相关文献

参考文献11

二级参考文献35

  • 1许日,宁辉,邱爱慈,莫凡,邱毓昌.重复率气体火花开关绝缘恢复特性[J].强激光与粒子束,1996,8(4):518-522. 被引量:24
  • 2[1]Saethre R, Kirbie H, Caporaso G, et al. Optical control, diagnostic and power supply system for a solid state induction modulator[A]. Proceedings of 11th IEEE International Pulsed Power Conference[C]. Baltimore Maryland, 1997. 1397-1402.
  • 3[2]Kirbie H, Cporaso G, Goerz D, et al. MHz repetition rate solid-state driver for high current induction accelerators[A]. 1999 Part Accel Conf[C]. New York City, 1999. 423-427.
  • 4[3]Yee H P. An EMI suppression MOSFET driver[A]. Proceedings of Applied Power Electronics Conference and Exposition[C]. Twelfth Annual, 1997. 242-248.
  • 5[4]Chitta V, Hong S. Series connection of IGBTs with active voltage balancing[J]. IEEE Transaction on Industry Application, 1999, 33 (4):917-923.
  • 6[1]Dickens J C, Engel T G , Kristiansen M. Electrode performance of a three electrode triggered high energy spark gap switch[A]. 9th IEEE International Pulsed Power Conference[C]. 1993. 471-474.
  • 7[2]Taylor R S, Leopold K E. UV radiation-triggered rail-gap switches[J]. Rev Sci Instrum, 1984, 55: 52-62.
  • 8[3]Rim G H, Cho C H. Design and testing of a rotary arc gap-switch for pulsed power[J]. IEEE Trans Plasma Sci, 2000,28: 1491-1496.
  • 9[4]Cho C H, Rim G H, Lee H S, et al. Experimental analysis of rotating arc behaviors in a rotary arc gap switch for a 500kJ capacitor bank[J].IEEE Trans on Magnetics, 2001, 37 (1): 358-361.
  • 10[5]Rim G H, Cho CH, Pavlov E P. Design and testing of a rotary arc gap switch for pulsed power[A]. 12th IEEE International Pulsed Power Conference[C]. 1999.219-223.

共引文献91

同被引文献115

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部