期刊文献+

半正二阶Neumann边值问题的正解 被引量:4

Positive Solutions of Singular Semipositone Second Order Neumann Boundary Value Problem
在线阅读 下载PDF
导出
摘要 考虑如下二阶Neumann边值问题:-u″+Mu=λf(t,u),0<t<1,u′(0)=u′(1)=0,其中,λ>0,M>0,f:(0,1]×(0,+∞)→(-∞,+∞)连续,f(t,u)允许在t=0,t=1处具有奇异性.在f无下界的条件下,利用锥压缩与拉伸不动点定理,讨论了二阶Neumann边值问题正解的存在性,改进和推广了现有f>0时的某些结果,并将所获得的结果应用于一个具体的二阶Neumann边值问题. The existence of the following singular semipositone second-order Neumann BVP is discussed: -u''+Mu=λf(t,u),0〈t〈1,u'(0)=u'(1)=0. Where λ〉0,M〉0,f:(0,1]×(0,+∞)→(-∞,+∞) is continuous, λ 〉 0 and M〉 0 is parameters, and f(t,u) may also be singular at t=0 or t=1. When f is unbounded below, the existence of positive solutions of singular semipositone second-order Neumann BVP is studied by means of fixed point theorem of conic expansion and compression of order type, and some results are improved and generalized when f〉0. And in the end,an example is given.
作者 戚仕硕 王霞
机构地区 郑州大学数学系
出处 《郑州大学学报(理学版)》 CAS 2006年第1期14-18,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 郑州大学青年骨干教师资助计划课题
关键词 正解 二阶NEUMANN边值问题 不动点定理 逼近方法 positive solution second-order Neumann BVP fixed point theorem appoximation method
  • 相关文献

参考文献6

二级参考文献17

  • 1孙经先.非线性Hammmerstein型积分方程正解的存在性及其应用[J].数学年刊:A辑,1988,9:90-96.
  • 2Liu Xiyu, Yan Baoqiang. Boundary-irregular solutions to singular boundary value problems. Nonlinear Analysis, 1998, 32(5): 633-646.
  • 3Zhang Y. Positive solutions of singular sublinear Emden-Fowler boundary value problems. J. Math.Anal. Appl., 1994, 185: 215-222.
  • 4Taliaferro S D. A nonlinear singular boundary value problem. Nonlinear Anal., 1979, 3: 897-904.
  • 5Choi Y S. A singular boundary value problem arising from near-ignition analysis of flame structure.Diff. Intewral. Eqns., 1991, 4: 891-895.
  • 6Robert. Dalmasso. Positive solutions of singular boundary value problems. Nonlinear Anal., 1996,27(6): 645-652.
  • 7Anuradha V, Hai D D, Shivaji R. Existence results for superlinear semipositone BVP's. Proc.Amer. Math Soc., 1996, 124(3): 757-763.
  • 8Agarwal Ravi P, Donal O'Regan. A note on exitence of nonnegative solutions to singular semipositone problems. Nonlinear Analysis, 1999, 36: 615-622.
  • 9Erbe L H,Proc Am Math Soc,1994年,120卷,743页
  • 10Yang Z,湘潭大学自然科学学报,1993年,15卷,增刊,205页

共引文献46

同被引文献18

  • 1姚庆六,李永祥.半正Neumann边值问题的解和正解的存在性与多解性[J].西南交通大学学报,2005,40(4):539-543. 被引量:13
  • 2姚庆六.非线性二阶Neumann边值问题的正解[J].工程数学学报,2006,23(5):939-942. 被引量:9
  • 3[1]Zhang Xinguang,Liu Lishan.Positive solutions of superlinear semipostione singular dirichlet boundary value problems[J].Math Anal Appl,2006,316(24):525-537
  • 4[3]Jiang Daqing,Liu Huizhao.Existence of positive solutions to second order Neumarm boundary value problems[J].Journal of Mathematical Research and Exposition,2002,20(3):360-364
  • 5[4]Guo Dajun,Lakshmikantham V,Liu Xinzhi.Nonlinear Integral Equations in Abstract spaces[M].Kluwer Academic Publishers,1987
  • 6Jiang Daqing, Liu Huizhao. Existence of positive solutions to second order Neumann boundary value problem[J]. Journal of Mathematical Research and Exposition, 2002, 20(3):360-364.
  • 7Sun Jianping, Li Wantong. Multipal positive solutions to second order Neumann boundary value probtems[J]. Applied Mathematics and Computation, 2003, 146(1) :187-194.
  • 8Krein M G, Rutman M A. I.inear operator leaving invariant a cone in a Banach space[J]. Amer Math Soc Trans, 1950, 26: 128.
  • 9Xingqiu Zhang,Yongping Sun,Qiuyan Zhong.Positive solutions of the singular second-order Neumann boundary value problem[].Journal of Engineering Mathematics.2004
  • 10Daqing Jiang,Huizhao Liu.Existence of positive solutions to second order Neumann boundary value problems[].Journal of Mathematical.2002

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部