期刊文献+

STABILITY OF ALPINE MEADOW ECOSYSTEM ON THE QINGHAI-TIBETAN PLATEAU 被引量:21

Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau
原文传递
导出
摘要 The meadow ecosystem on the Qing- hai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for pre- dicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow eco- system was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv = 28.82%). The net primary produc- tion was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai- Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosys- tem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3―4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment. The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv = 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E= 0.1113). In summary, the alpine meadow ecosystem on the Qinghai- Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2006年第3期320-327,共8页
关键词 高山草甸 生态系统 生态稳定性 变异系数 生态多样性 青藏高原 alpine meadow, stability, coefficient of variance, ecosystem diversity, net primary production, precipitation, temperature.
  • 相关文献

同被引文献429

引证文献21

二级引证文献659

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部