期刊文献+

用于腔量子电动力学研究的铯原子双磁光阱 被引量:2

Cesium Double Magneto-Optical Trap for Cavity-Quantum Electrodynamics
原文传递
导出
摘要 建立了铯原子双磁光阱(MOT)系统用来制备腔量子电动力学(Cavity-QED)实验所需的处于超高真空(UHV)环境中的冷原子。采用一束聚焦的连续激光束将气室磁光阱从背景铯蒸气中冷却并将俘获到的冷原子有效地输运到超高真空磁光阱,实现了铯原子双磁光阱。实验中研究了输运光束的失谐量对于超高真空磁光阱中的稳态冷原子数的影响,同时对气室磁光阱和超高真空磁光阱的装载过程作了分析。气室磁光阱和超高真空磁光阱的典型气压分别约为1×10-6Pa和8×10-8Pa,典型的稳态冷原子数分别约为5×107和5×106,冷原子等效温度约72±4μK。 A cesium double magneto-optical trap (MOT) system is established to prepare the cold atoms in the ultrahigh-vacuum (UHV) chamber for cavity quantum electrodynamics (Cavity-QED) experiment. Utilizing a focused weak continuous-wave laser beam, the cold cesium atoms, which are cooled and trapped from the slow tail of cesium vapor at room temperature, are continuously transferred from vapor-cell MOT to UHV MOT. The effect of the transfer laser detuning upon the steady-state atoms number in UHV MOT, and loading process of double MOT are experimentally investigated. Typical pressures of the vapor-cell MOT and UHV MOT are -1×10^-6 Pa and -8×10^-8 Pa, respectively. Normally -5×10^7 and -5×10^6 cold cesium atoms with effective temperature of 72±4μK are loaded into the vapor-cell MOT and UHV MOT.
出处 《中国激光》 EI CAS CSCD 北大核心 2006年第2期190-194,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(60578018 10434080 10374062) 教育部科学技术研究重点项目(204019) 山西省高校青年学术带头人科研经费资助课题
关键词 量子光学 双磁光阱 冷原子 铯原子 腔量子电动力学 quantum optics double magneto-optical trap cold atoms cesium atoms cavity quantum electrodynamics
  • 相关文献

参考文献5

二级参考文献77

  • 1Sun K X, Fejer M M, Gustafson E and Byer R L 1996 Phys.Rev. Lett. 76 3053.
  • 2Kuri T and Kitayama K 2002 J Commun. Res. Lab. 4945.
  • 3Westbrook C I, Watts R N, Tanner C E, Rolston S L,Phillips W D and Lett P D 1990 Phys. Rev. Lett. 6533.
  • 4Kempe M, Genack A Z, Rudolph W and Dorn P 1997 J Soc. Am. A 14 216.
  • 5Lin H, Wang T, Wilson G A and Mossberg T W 1995 Opt.Lett. 20 928.
  • 6Liu Q M, Mi J, Qian SX and Gan F X 2002 Chin. Phys.Lett. 19 575.
  • 7Laconis C, Mukamel E and Walmsley I A 2000 J. Opt. B:Quantum Semiclass. Opt. 2 510.
  • 8D'Ariano G M, Kumar P, Macchiavello C, Maccone L and Sterpi N 1999 Phys. Rev. Lett. 83 2490.
  • 9Paris G M A 1996 Phys. Rev. A 53 2658.
  • 10Wiseman H M and Killip R B 1997 Phys. Rev. A 56 944.

共引文献34

同被引文献32

  • 1张远宪,韩德昱,祝昆,江楠,普小云.包层介质折射率引起的回音壁模式光纤激光波长漂移[J].中国激光,2009,36(3):691-694. 被引量:11
  • 2鞠涛,杨小丽.微球激光本征模的求解与分析[J].光电技术应用,2006,21(1):28-30. 被引量:1
  • 3T. Carmon, K. J. Vahala. Visible continuous emission from a silicamicro photonie device by third-harmonic generation[J]. Nature Physics, 2007, 3(6): 430-435.
  • 4F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: labelfree detection down to single molecules[J]. Nature Methods, 2008, 5(7) : 591-596.
  • 5Jijun Xiong, Yingzhan Yan, Zhe Ji et al.. Micro sensors based on planar microtoroid cavities [C]. SPIE, 2009, 7157: 71570R.
  • 6G. Anetsberger, R. Rivie're, A. Schliesser et al.. Ultralow-dissipation optomechanical resonators on a chip [J]. Nature Photonics, 2008, 2(10) : 627-633.
  • 7J. C. F. Matthews, A. Politi, A. Stefanov et al.. Manipulation of multiphoton entanglement in waveguide quantum circuits [J]. Nature Photonics, 2009, 3(6) : 346-350.
  • 8E. M. Purcell. Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev. , 1946, 69:681.
  • 9A. Serpenguzel, A. Kurt, U, K. Ayaz. Silicon microspheres for electronic and photonic integration [J]. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6 (3,4) : 179-182.
  • 10Y. Xu, M. Han, A. Wang et al.. Second order parametric processes in nonlinear silica microspheres[J]. Phys. Rev. Lett. , 2008, 100(16): 163905.

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部