期刊文献+

双寡头有限理性广告竞争博弈模型的复杂性分析 被引量:47

Complex Dynamics Analysis for a Duopoly Advertising Model with Bounded Rationality
原文传递
导出
摘要 对有限理性动态古诺模型进行了改进,并将其引入到广告市场中,同时也综合考虑了广告成本和生产成本的影响,使得该模型更加符合实际.在此基础上,对改进后的模型的演化过程进行了分析,指出了Nash均衡的稳定区域及其影响因素.通过理论分析和数值模拟计算研究模型中各参数的变化情况,发现当企业为获取前期的竞争优势,而加快广告投入量的调整速度和提高单位广告所产生的平均需求时,将会导致系统的不稳定,从而使系统陷入混沌状态这一经济现象. Improving the dynamic cournot game model, considering the effect of advertising and producing costs and then applying it to the advertising market, we make the model more practical to the market. On this basis, we points out the stable region of Nash equilibrium and its influencing factors by analyzing the evolution process of the improved model. Studying how the parameter of the model changes through theoretical analysis and numerical simulation, we discover when enterprise accelerates the adjustment speed of the output quantity in advertisement and increases the market demand of the advertisement unit in order to achieve initial advantage, it leads to instability of systems and makes the systems sink into the chaotic state.
作者 姚洪兴 徐峰
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第12期32-37,共6页 Systems Engineering-Theory & Practice
基金 国家博士后基金(2003033498) 江苏省教育厅基金(03KJD11007003SJB630002) 江苏大学校基金(16830002703JDQ015)
关键词 广告竞争 有限理性 NASH均衡 混沌 advertising competition bounded rationality Nash equilibrium chaos
  • 相关文献

参考文献8

  • 1任方旭,邵云飞,唐小我.寡头垄断市场下的广告竞争策略研究[J].河南科学,2002,20(3):320-323. 被引量:15
  • 2Agiza H N, Hegazi A S, Elsadany A A. Complex dynamics and synchronization of a duopoly game with bounded rationality [ J ].Mathematics and Computers in Simulation, 2002,58 : 133 - 146.
  • 3Bischi G I, Naimzada A. Global analysis of a dynamic duopoly game with bounded rationality [ A ]. Dynamics Games and Application, vol. 5, Birkhouser, 1999 ( Chapter20).
  • 4Agiza H N, Hegazi A S, Elsadany A A. The dynamics of Bowley's model with bounded rationality [J]. Chaos, Solitons and Fractals, 2001,12 : 1705 - 1717.
  • 5Williamson O E. The Economic Institutions of Capitalism: Firms, Markets, Relational Contracting[M]. Beijing: China Social Sciences Publishing House, 1999.
  • 6姚洪兴,盛昭瀚,陈洪香.股市预测中的小波神经网络方法[J].系统工程理论与实践,2002,22(6):33-38. 被引量:25
  • 7姚洪兴,盛昭瀚,田立新.经济管理混沌模型的控制域研究[J].管理科学学报,2003,6(5):29-33. 被引量:5
  • 8盛昭翰 马军海.非线性动力系统分析引论[M].北京:科学出版社,2001..

二级参考文献21

  • 1李民,邹捷中,李俊平,梁建武.用ARMA模型预测深沪股市[J].长沙铁道学院学报,2000,18(1):78-84. 被引量:22
  • 2Ott E, Grebogi C , Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990, 64:1196--1199.
  • 3Y C, Grebogi C, TeHI T. Controlling transient chaos in dynamical systems[C]. In Towards the Harnessing of Chaos. The 7th TOYOTA Conference, Elsevier, Amsterdam, 1994. 153--167.
  • 4Antoniou I, Bosco F, Suchanecki Z. Spectral decomposition of expanding probabilistic dynamical systems[J]. Plays Lett A, 1998,239:153--159.
  • 5Antoniou I, Bosco F. Spectral decomposition of contracting probabilistic dynamical systems[J]. Chaos Solitons and Fractals, 1998,9(3) : 401--408.
  • 6Bosco F. Generalized spectral decomposition of probabilistie dynamical systems[ D]. Brazil: Universite Libre de Bruxelles, 1996.
  • 7Romeiras F J, Grebogi C, Ott E, et al. Controlling chaotic dynamical systems[J]. Phys D, 1992, 58:165--192.
  • 8Ott E, Grebogi C, York J A. Soviet American Perspectives on Nonlinear Science[ C ], in D. K. Campell (Ed.), American Institute of Physics, NY, 1990. 153--162.
  • 9Priesmeyer H R, Baik K. Dynamic economic system[J].Planning Review. 1994, 17(6) : 14--26.
  • 10杨叔子 吴雅 等.时间序列分析在工程中的应用[M].武汉:华中理工大学出版社,1992..

共引文献49

同被引文献441

引证文献47

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部