期刊文献+

解空间种群均匀化自适应遗传算法的应用 被引量:3

Application of self-adaptive genetic algorithm with population uniformity in solution space
在线阅读 下载PDF
导出
摘要 提出了一种新型解空间种群均匀化的自适应遗传算法,并采用随机方法对初始种群加以改进,使初始种群均匀分布于解空间之中.在优化进程中,引入自适应算法,使交叉和变异算子具有自适应性;将自适应调节机制引入适应值函数中,使适应值函数同样具有自适应性.为证实所提出的改进遗传算法的可行性和有效性,对几种典型的多峰值函数进行了寻优测试.优化测试结果与解析解及标准遗传算法优化结果相对比,证明改进遗传算法的全局搜索能力和收敛性都远优于标准遗传算法. An improved self-adaptive genetic algorithm (GA) with population uniformity in the whole solution space has been proposed, and the initial population has been improved using the random method for increasing convergency of the optimum in the global space. In optimizing, self-adaptive algorithm has been introduced to adjust the self-adaptive cross operator, self-adaptive mutant operator and fitness function. For verifying the feasibility and validity of the proposed GA, some typical nonlinear testing functions with multiple extremes have been testified. By comparison of the optimized testing results with the analytical solutions and the traditional ones, it is proved that the global searching ability and convergency speed of the proposed GA are higher than those of the standard genetic algorithm (SGA).
出处 《沈阳工业大学学报》 EI CAS 2005年第6期623-628,共6页 Journal of Shenyang University of Technology
基金 辽宁省博士科研启动资助项目(20041026)
关键词 遗传算法 自适应 初始种群 遗传算子 优化 genetic algorithms self-adaptation initial population genetic operators optimization
  • 相关文献

参考文献12

二级参考文献52

  • 1周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 2[1]Holland J H. Adaptation in Nature and Artificial System[M]. Ann Arbor: The University of Michigan Press, 1975.
  • 3[2]Radolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Network,1994,5(1) :96-101.
  • 4[3]Qix F. Palmieri theoretical analysis of evolutionary algorithms with an infinite population size in continuous space [J]. IEEE Trans on Neural Network, 1994,5(1) : 102-129.
  • 5[8]Chen Wei,Chen Li,Ma Yao.The improvement ofgenetic algorithm performance[A].Proc of 2002 IntConf On Machine Learning and Cybernetics[C].Beijing,2002.945-951.
  • 6章珂,刘贵忠.交叉位置非等概率选取的遗传算法[J].信息与控制,1997,26(1):53-60. 被引量:41
  • 7Williamd R D. Two approaches to machine intelligence [J]. Computer, 1992, (2) : 78-81.
  • 8DeJong K A. Analysis of behavior of a class of adaptive system[D]. Kalamazoo: University of Michigan,1975.
  • 9Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. New York:Addison-Wesley, 1989.
  • 10Michalewicz Z. Genetic Algorithms+Data Structures= Evolution Programs [M ]. Berlin : Springer-Verlag,1996.

共引文献705

同被引文献46

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部