期刊文献+

用应力函数法求功能梯度梁的弹性理论解 被引量:3

Stress function method for elasticity solution of functionally graded beams
在线阅读 下载PDF
导出
摘要 假设弹性模量为厚度的指数函数,泊松比为常数,用应力函数法求解FGM梁的弹性理论解。得到了FGM简支梁弯曲问题的解析解。考察了不同弹性模量变化规律对FGM深梁位移和应力分量的影响。为校验FGM梁、板近似理论和数值方法的有效性提供了依据。 Young's modulus is assumed to be graded through the thickness according exponential-law, and Poisson's ratio is constant. The stress function method is introduced to get the elasticity solution for FGM beams. Elasticity solution for simply-supported FGM beams subjected to any transverse force is obtained. Effects of the Young's modulus's distributing rules on the displacements and stresses for FGM deep beams are then investigated. The proposed elasticity solution can be used to assess the validity of various approximate theories and numerical methods for FGM beams and plates.
出处 《强度与环境》 2005年第4期17-21,38,共6页 Structure & Environment Engineering
关键词 功能梯度材料 FGM梁、板 相容方程 应力函数 functionally graded material FGM beams and plates consistent equation AiryJs stress function
  • 相关文献

参考文献10

  • 1Suresh S, Mortensen A. Fundamentals of functionally graded materials[M]. London: IOM Communications Ltd, 1998.
  • 2沈惠申.功能梯度复合材料板壳结构的弯曲、屈曲和振动[J].力学进展,2004,34(1):53-60. 被引量:90
  • 3Sankar B V. An elasticity solution for functionally graded beams[J]. Composites Science and Technology, 2001, 61:689-696.
  • 4Venkataraman S, Sankar B V. Elasticitv solution for stress in a sandwich beam with functionally graded core[J]. AIAA Journal, 2003, 41(12): 2501-2505.
  • 5Anderson T A. Three-dimensional elasticity analysis of sandwich composites with functionally graded core[R]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structrual Dynamics, and Material Conference, AIAA 2002-1246, Denver, Colorado.
  • 6Chakraborty A, Gopalakrishnan S, Reddy J N. A new beam finite element for the analysis of functionally graded materials [J]. International Journal of Mechanical Sciences, 2003, 45: 519-539.
  • 7Batra R C, Vel S S. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates[J]. AIAA Joumal, 2002, 40(7): 1421-1433.
  • 8Kashtalyan M. There-dimensional elasticity solution for bending of functionally graded rectangular plates[J]. European Journal of Mechanics A/Solids, in press.
  • 9Timoshenko S P, Goodier J N. Theory of elasticity[M]. 3rd edition, McGraw-Hill, 1970.
  • 10李永,宋健,张志民.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论[J].宇航学报,2002,23(4):62-67. 被引量:7

二级参考文献84

  • 1Woo J, Meguid S A. Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures, 2001, 38:7409~7421
  • 2Ma L S, Wang T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. International Journal of Solids and Structures, 2003, 40:3311~3330
  • 3Birman V. Stability of functionally graded hybrid composite plates. Composites Engineering, 1995, 5(7): 913~921
  • 4Feldman E, Aboudi J. Buckling analysis of functionally graded plates subjected to uniaxial loading. Composite Structures, 1997, 38(1-4): 29~36
  • 5Cheng Z Q, Kitipornchai S. Membrane analogy of buckling and vibration of inhomogeneous plates. Journal of Engineering Mechanics ASCE, 1999, 125(11): 1293~1297
  • 6Cheng Z Q, Batra R C. Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration,2000, 229 (4): 879~895
  • 7Reddy J N, Cheng Z Q. Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal planform. International Journal of Mechanical Sciences, 2002, 44:967~985
  • 8Javaheri R, Eslami M R. Buckling of functionally graded plates under in-plane compressive loading. ZAMM, 2002,82 (4): 277~283
  • 9Javaheri R, Eslami M R. Thermal buckling of functionally graded plates. AIAA Journal, 2002, 40 (1): 162~169
  • 10Javaheri R, Eslami M R. Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses, 2002, 25 (7): 603~625

共引文献95

同被引文献34

  • 1姚文娟,叶志明.不同模量横力弯曲梁的解析解[J].应用数学和力学,2004,25(10):1014-1022. 被引量:45
  • 2朱昊文,李尧臣,杨昌锦.功能梯度压电材料板的有限元解[J].力学季刊,2005,26(4):567-571. 被引量:8
  • 3阿巴尔楚米扬.不同模量弹性理论[M].邬瑞锋,张允真译.北京:中国铁道出版社,1986:11-22.
  • 4张驰,校金友.功能梯度材料的有限元方法研究[J].飞机设计,2007,27(4):31-33. 被引量:3
  • 5Hiral T, Chen L. Recent and prospective development of functionally graded materials in JapanJ]. Materials Science Forum, 1999,308-311.2003,60(3) ; 265-274.
  • 6Abrate S. Impact on composite structuresEM]. Cam- bridge UK: Cambridge University Press, 1998. Anderson TPu A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere I-J]. Composite Structures,.
  • 7Sankar B V. An elasticity solution for functionally gra- ded beams [-J]. Composites Science and Technology, 2001,61(5) .689-696.
  • 8Zhong Z, Yu T Analytical solution of a cantilever func- tionally graded beam[-J-], Composites Science and Tech- nology, 2007,67 : 481-488.
  • 9Venkataraman S, Sankar B V. Elasticity solution for stresses in a sandwich beam with functionally graded core[J, AIAA, 2003,41 (12) : 2501-2505.
  • 10Hsueh C H, Lee S. Modeling of elastic thermal stresses in two materials joined By a graded layer[J-]. Compos- ites: Part B, 2003,34 (8) : 747-752.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部