期刊文献+

模拟不连续介质的非连续有限元法 被引量:6

Discontinuous finite element method for simulation of discontinuities
在线阅读 下载PDF
导出
摘要 在传统有限元的框架上提出一个能模拟诸如裂纹、节理等非连续性结构的新技术———非连续有限元法,该方法通过反映非连续场和尖端渐进场的附加函数来丰富传统有限元的近似模式,以达到场内非协调的目的;该技术允许整个非连续性结构独立于网格,使得在模拟非连续性结构(裂纹、节理等)的演化发展时无需重剖网格.详细讨论了非连续附加函数的构造,并用弱解形式推导了非连续有限元格式,并给出算例. A new technique for modeling discontinuities, such as cracks and joints in the finite element framework, was presented. A standard displacement-based approximation was enriched near a discontinuity by incorporating the enrichment functions for both discontinuous fields and near tip asymptotic fields. The technique allows the entire discontinuities to be independent of the mesh, therefore remeshing is unnecessary to model the evolvement of discontinuities. Moreover, the construction of the discontinuous enrichment function was discussed in detail, and the discontinuous finite element discrete equation was deduced from the weak form. Numerical experiments were provided to demonstrate the utilitv and robustness of the proposed technique.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期682-687,共6页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金资助项目(50379004)
关键词 非连续有限元 附加自由度 非连续附加函数 discontinuous finite element enriched freedom degree discontinuous enrichment function
  • 相关文献

参考文献8

  • 1王泳嘉 邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991..
  • 2卓家寿 章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.1-262.
  • 3石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 4BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45:601-620.
  • 5BELYTSCHKO T,MOES N,USUI S,et al.Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering,2001,50:993-1013.
  • 6切列帕诺夫 黄克智 译.脆性断裂力学[M].北京:科学出版社,1990..
  • 7MOES N,DOLBOW J,BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
  • 8STROUBOULIS T,COPPS K,BABUSKA I.The generalized finite element method: an example of its implementation and illustration of its performance[J].International Journal for Numerical Methods in Engineering,2000,47(8):1401-1417.

共引文献160

同被引文献34

  • 1REN QingWen,DONG YuWen,YU TianTang.Numerical modeling of concrete hydraulic fracturing with extended finite element method[J].Science China(Technological Sciences),2009,52(3):559-565. 被引量:30
  • 2切列帕诺夫 黄克智 译.脆性断裂力学[M].北京:科学出版社,1990..
  • 3王泳嘉 邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991..
  • 4石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 5卓家寿 章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.1-262.
  • 6Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering, 1999,45 : 601-620.
  • 7Belytschko T,Moes N,Usui S,Parimi C,Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering, 2001,50:993-1013.
  • 8王泳嘉,邢继波.离散单元法及其在岩土工程中的应用[M].哈尔滨:东北工学院出版社,1991.
  • 9BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999,45 : 601- 620.
  • 10BELYTSCHKO T, MOES N, USUI S, et al. Arbitrary discontinuities in finite elements [J]. International Journal for Numerical Methods in Engineering, 2001,50 : 993-1013.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部