期刊文献+

改进最大熵算法重建日像仪太阳图像 被引量:1

Interferometric Solar Image Reconstruction Using Improved Maximum Entropy Method
在线阅读 下载PDF
导出
摘要 通过对SB算法在搜索方向上的改进,使原算法由于近似而产生较大误差时可以自动得到校正,达到了快速与准确的和谐统一;利用两种算法对中国科学院国家天文台拟建的日像仪进行了仿真.结果显示,改进算法的重建图像分辨率得到明显提高而时间效率与原有算法相当,大量仿真则证明了算法收敛的稳定性. The interferometfie solar image reconstruction is the last and the most important method to get the high-resolution image. The Skilling-Bryan maximum entropy method featured in convergence rate is one of the predominant methods in astronomy image proceeding. The proposed method innovated in search directions of SB combines the speed with exactness harmoniously as a result of the error adjustment. Finally the simulations were conducted with both methods of interferometric solar image reconstruction in national astronomical observatories.Results showed the superiority of the improved method in resolution and counterbalance in computing time. Its stability was also testified with various examples.
出处 《中国科学院研究生院学报》 CAS CSCD 2005年第6期685-689,共5页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 中国科学院 科学技术部973项目(G2000078403) 自然科学基金项目(10225313)共同资助
关键词 日像仪 最大熵算法 反卷积 图像重建 interferometer, maximum entropy method, deconvolution, image reconstruction
  • 相关文献

参考文献7

  • 1Starck JL, Pantin E, Murtagh F. Deconvolution in astronomy: a review. The Publications of the Astronomical Society of the Pacific, 2002, 114:1051~ 1069.
  • 2Gull SF, Daniell JG. Image reconstruction from incomplete and noisy data. Nature, 1978, 272: 686 ~ 690.
  • 3Skiling J, BryanRK. Maximum entropy image reconstruction: general algorithm. Mon. Not. R. Astr. Soc., 1984, 211:111~124.
  • 4Pantin E, Starck JL. Deconvolution of astronomical images using the multiscale maximum entropy method. Astron. Astrophy. Suppl., 1996,118:575~ 585.
  • 5Bontekoe TR, Koper E, Kester DJM. Pyramid maximum entropy images of IBAS survey data. Astron. Astrophy., 1994,284(3) :1037 ~ 1053.
  • 6Maisinger K. Hobson MP, Lasenby AN. Maximum-entropy image reconstruction using wavelets. Mon. Not. R. Astr. Soc. , 2004, 347(1): 339~ 354.
  • 7Comwell TJ, Evans KF. A simple maximum entropy deconvolution algorithm. Astron. Astrophy. , 1985,143:77 ~ 83.

同被引文献15

  • 1Frieden B R. Restoring with Maximum Likelihood and Maximum Entropy[J].Washington,DC:Optical Society of America,1972,(04):511-518.
  • 2Cornwell T J,Evans K F. A Simple Maximum Entropy Deconvolution Algorithm[J].Astronomy and Astrophysics,1985,(01):77-83.
  • 3Jackett C J,Turner P J,Lovell J L. Deconvolution of MODIS Imagery Using Multiscale Maximum Entropy[J].Remote Sensing Letters,2011,(03):179-187.
  • 4Schwarz U J. The Method 'CLEAN'-Use,Misuse and Variations[A].Netherlands:Astrophysics and Space Science Library,1978.261-269.
  • 5Clark B G. An Efficient Implementation of the Algorithm 'CLEAN'[J].Astronomy and Astrophysics,1980,(03):377-378.
  • 6Donoho D L. Compressed Sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 7Candés E. Compressive Sampling[A].Madrid:American Mathmatical Society,2006.1433-1452.
  • 8Candés E,Tao T. Near Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J].IEEE Transactions on Information theory,2006,(12):5406-5425.
  • 9Tsaig Y,Donoho D. Extensions of Compressed Sensing[J].Signal Processing,2006,(03):549-571.doi:10.1016/j.sigpro.2005.05.029.
  • 10Candés E,Romberg J,Tao T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部