期刊文献+

基于遗传算法的快速成型分层方向优化设计 被引量:6

Optimum Design for RP Deposition Orientation by Genetic Algorithm
在线阅读 下载PDF
导出
摘要 快速成型制造技术具有高度的柔性和灵活性,应用前景广泛。快速成型分层方向的选择,对于零件的制作精度、成型时间及制作成本有着重要影响。目前常见的分层方向算法往往顾此失彼,为了尽可能同时满足这3个单目标模型的最优化,本文提出将均匀设计、正交设计与遗传算法相结合作为求解多目标优化的新方法,可用较少的计算量求得分层方向的最优解。实验结果表明,改进后的算法有效,在迭代次数和所用时间上远远优于目前常用的基本算法。 Rapid Prototyping (RP) technology is very flexible and agile in advanced manufacturing, and has a wide application range. The choice of the deposition orientation in rapid prototyping has an important influence on the accuracy of the model, the building time and the prototype cost. The slicing algorithms in common use can not satisfy the above mentioned requirements. In order to simultaneously obtain optimization of three objectives, a new algorithm is proposed for the multi-objective optimization by combining the uniform design and orthogonal design with the genetic algorithm. The new algorithm can find the optimal solution with less computation. Experimental results indicate that the improved algorithm is feasible than current algorithms in iteration times and computation time.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第B11期134-136,共3页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(50475026)资助项目
关键词 快速成型 多目标优化 遗传算法 rapid prototyping multi-objective optimization genetic algorithm
  • 相关文献

参考文献5

二级参考文献13

  • 1王军杰.光固化法快速成型中零件支撑及制作方向研究[M].西安:西安交通大学机械工程学报,1997..
  • 2洪军 卢秉恒 等.光固化法快速成型中支撑的结构策略研究.RP技术与快速模具制造会议论文集[M].西安:陕西科学技术出版社,1998.114-116.
  • 3[1]Fang K T, Wang Y. Number-Theoretic Methods in Statistics[M]. London: Chapman & Hall, 1994
  • 4[2]Ishibuchi H, Murata H. A mult-objective genetic local algorithm and its application to flowshop scheduling[J]. IEEE Transactions On Systems, Man and Cyberetics-Part C:Applications and Reviews, 1998, 28(3): 392-403
  • 5[3]Fonseca C M, Fleming P J. An overview of evolutionary algorithms for multiobjective optimization[J]. Evolutionary Computation, 1995, 3(1): 1-16
  • 6[4]Veldhuizen D V. Multiobjective Evolutionary Algorithms: Classifications, Analysis, and New Innovations[D]. Ph.D dissertation, Air Force Institute of Technology, Air University, USA: 1999. 22-24
  • 7[5]Allen A O. Probability, Statistics and Queuing Theory with Computer Science Applications[M].2nd Edition. Boston, MA: Academic Press, Inc., 1990
  • 8[6]Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 1-24
  • 9[7]Zitzler E, Deb K, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271
  • 10[8]Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230

共引文献33

同被引文献37

引证文献6

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部