期刊文献+

三维有限元分析角度基台对种植体骨界面应力分布的影响 被引量:15

Three-dimensional finite element stress analysis of angled abutments in implant-bone interface
在线阅读 下载PDF
导出
摘要 目的采用三维有限元的方法,分析各种角度基台对种植体骨界面应力、应变分布的影响,为临床使用提供理论参考。方法采用CT薄层扫描,建立含种植体的下颌骨三维有限元模型。模拟咀嚼肌加载,用ALGOR软件分析直基台和10°、20°、30°角基台修复时,种植体骨界面应力、应变分布的不同。结果发用数值和图的形式显示综合应力、最大和最小主应变。直基台修复时,综合应力集中于种植体颈部骨皮质,种植体底部次之。随基台角度的增加,种植体骨界面综合应力、最大和最小主应变值均从集中于种植体颈部转移至底部。结论随基台角度的增加,种植体骨界面应力、应变均增大;30°角基台修复时,其应力、应变增大显著。 Objectives Three-dimensional finite element method was applied to analyze the influence of various angled abutments on the distribution of the stress and strain in the implant-bone interface. Methods Thin-slice scanning of spiral computed tomography was applied to construct a three-dimensional finite element model of mandible with dental implants. A simulated force of masticatory muscles was loaded in the mathematical models to analyze the stress and strain distribution in the implant-bone interface by using ALGOR software program, when dental implants were conjunct to straight,10° ,20° and 30° abutments, respectively. Results Numerical and graphic results were generated for Von Mises stress and maximum as well as minimum strains. Von Mises stress occurred predominantly in the cortical bone layer--on the neck of implants, and secondly at the bottom of dental implants. With the angle of abutments added, the positions of Von Mises stress,the maximal and minimal principal strain were all transferred from the neck to the bottom of dental implants. Conclusion There was an increase occurred in the magnitude of stress and strain in the implant-bone interface as the abutment angulation increased. It increased obviously when the denture was produced by 30° abutment.
出处 《医用生物力学》 EI CAS CSCD 2005年第3期153-156,共4页 Journal of Medical Biomechanics
关键词 牙种植 有限元法 应力 应变 角度基台 Dental implants Finite element method Stress Strain Angled abutment
  • 相关文献

参考文献7

  • 1Meijer HJA, Starmans FJM, Bosman F, et al. A comparison of three finite element models of edentulous mandible provided with implants[J]. J Oral Rehabil, 1993,20:147-157.
  • 2Stegariod R, Kusakari H, Nishiyamas, et al. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis[J]. Int J Oral Maxillofac Implants, 1998,13:781-790.
  • 3Meroueh KA, Watanabe F, Mentag PJ. Finite element analysis of partially edentulous mandible rehabilitated with an osteointeg rated cylindrical implant[J]. J Oral Implantol, 1987,13(2):215-238.
  • 4Korioth TWP, Hannam AG. Deformation of the human mandible during simulated tooth clenching[J]. J Dent Res, 1994,73(1):56-65.
  • 5Hart RT, Hennebel VV, Thongpreda N, et al. Modeling the biomechanics of the mandible: a three-dimensional finite element study[J]. J Biomech, 1992,25(3):261-286.
  • 6Atwood DA . Bone loss of edentulous alveolar ridg[J]. J Periodontol, 1979,50(4):11-22.
  • 7Frost HM. The mechanostat: a prosposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents[J]. Bone Miner, 1987,2(2):73-85.

同被引文献198

引证文献15

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部