期刊文献+

二维复式格子声子晶体带隙结构特性 被引量:17

Characteristics of the band structure in two-dimensional phononic crystals with complex lattices
原文传递
导出
摘要 借助于平面波展开法分析了二维复式格子声子晶体能带结构,计算了铝合金柱体按周期性结构排列在空气中形成的二维固/气复合体系的声子晶体,给出了复式蜂窝格子和复式Kagome格子的能带结构,进而对比分析了复式格子和简单格子的能带结构特性.结果表明,与简单格子相比,复式格子的带隙出现在频率相对较低的位置;在f=0·091—0·6046范围内,将声子晶体排列为复式格子要优于简单格子,可以得到更宽带隙.此外,引入了带隙分布图,讨论了填充系数f对带隙数目、带隙宽度以及带隙上下边界频率的影响. The band structure of two-dimensional phononic crystals with complex lattices is analyzed using the plane-wave algorithm in this paper. Phononic crystals composed of two-dimensional arrays of periodic aluminium alloy cylinders in air are calculated. Band structures of two types of complex lattices, the honeycomb and the Kagome lattices, are presented. The band structures of complex lattices and simple lattices are compared. It is concluded that compared with simple lattices, the band-gap of complex lattices are located at lower frequency fields. When the filling fraction is between 0.091 and 0.6046, the complex lattices have larger band gaps and gain an advantage over simple lattices. In addition, the gap map is introduced to illustrate the influences of the filling fraction on the number, the width and the limit frequency of the band-gap.
作者 赵芳 苑立波
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第10期4511-4516,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50179007) 教育部高校优秀青年教师教学科研奖励计划项目资助的课题.~~
关键词 声子晶体 复式格子 带隙 平面波算法 结构特性 宽带隙 格子 复式 二维 能带结构 phononic crystal, complex lattice, band-gap, plane wave-algorithm
  • 相关文献

参考文献27

  • 1Sigalas M M and Economou E N 1992 J. Sound and Vibration 158 337
  • 2Kushwaha M S, Halevi P et al 1993 Phys. Rev. Lett. 71 2022
  • 3Martinez-Sala R et al 1995 Nature 378 241
  • 4Wu F G, Liu Z Y et al 2002 J. Phys. D: Appl. Phys. 35 162
  • 5Wu F G, Liu Z Y et al 2002 Sol. Stat. Commun. 123 239
  • 6Cao Y J, Liu Z Y and Wu F G 2004 phys. Lett. A 327 247
  • 7Yukihiro Tanaka and Shin-ichiro Tamura 2002 Phys. B 316 237
  • 8Caballero D and Sa'nchez-Dehesa J 2001 Phys. Rev. B 64 064303
  • 9Kuang W M, Hou Z L and Liu Y Y 2004 Phys. Lett. A 332 481
  • 10Zhang X, Liu Z Y, Wu F G et al 2003 Phys. Lett. A 317 144

二级参考文献33

  • 1Martinez-Sala R, Sancho J,et al.Sound Attenuation by Sculpture[J]. Nature,1995, 378:(16) 241.
  • 2Sanche-Perez J V, Caballero D,et al; Sound Attenuation by Two-Dimensional Array of Rigid Cylinder[J]. Phys. Rev. Lett. 1998, 80:5325-5328.
  • 3Vasseur J O, Deymier P A,et al; Phononic Crystal with Low Filling Fraction and Absolute Acoustic Band Gaps in the Audible Frequency Rangs:A Theoretical and Experimental Study[J]. Phys. Rev. E. 2002, 65(5): 056608-X.
  • 4Vasseur J O, Djafari-Rouhani B,et al; Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: the Carbon/Epoxy Composite and some Metallic Systems[J].J.PHYS: CONDENS MAT. 1994,6: 8759-8770.
  • 5Vasseur J O, Deymier P A,et al; Experimental Evidence for the Existence of Absolute Acoustic Band Gaps in Two-dimensional Periodic Composite Media[J].J.PHYS: CONDENS MAT. 1998,10: 6051-6064.
  • 6Sigalas M M. Elastic Wave Band Gaps and Defect States in Two-dimensional Composites[J]. J. Acoust. Soc. .Am., 1997,101(3): 1256-1261.
  • 7Sigalas M M. Defect States of Acoustic Waves in a Two-dimensional Lattice of Solid Cylinders [J]. J. Appl. Phys. 1998, 85(6): 3026-3030.
  • 8Kushwaha M S. Stop-bands for Periodic Metallic Rods: Sculptures that can Filter the Noise[J]. Appl. Phys. Lett,1997,70(24): 3218-3220.
  • 9[1]Soukoulis C M 1996 Photonic Band Gap Materials (Dordrecht:Kluwer Academic)
  • 10[2]Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals (Princeton: Princeton University Press)

共引文献86

同被引文献164

引证文献17

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部