期刊文献+

不确定时滞系统α-鲁棒输出反馈控制 被引量:1

a-robust output-feedback control for uncertain time-delay system
在线阅读 下载PDF
导出
摘要 为提高动态系统的性能,提出了一种基于线性矩阵不等式技术的鲁棒输出反馈控制器设计方法.该方法针对一类具有范数有界不确定性的线性时变时滞系统,利用状态变换和Lyapunov稳定性定理,得到该控制器存在的一个充分条件, 继而用正交补空间方法和Schur补引理将该充分条件转化为易于实现的线性矩阵不等式(LMI)形式,并给出控制器设计方法.结果表明,用该方法设计的输出反馈控制器使闭环系统α-一致渐近稳定且满足H∞性能指标。并且利用Matlab工具箱可以简洁快速地获取控制器各增益矩阵,该设计方法的可行性和优越性通过一个仿真实例得到了充分的证实. To enhance the performance of dynamic systems, a design method of robust output-feedback controller based on the linear matrix inequality technique was proposed. The method focused on aclass of linear time-varying time-delay systems with norm-bounded uncertainty, and yielded a sufficient condition for the existence of the controller by using state transformation and Lyapunov stability theorem. The theory of orthogonal complement space and Schur complement lemma were used to translate this sufficient condition into linear matrix inequality form and obtained the method for designing the controller. Results show that with this design method, the output-feedback controller guarantees the closed-loop system to be a-uniform asymptotically stable and has H. performance, and that the gain matrices of the controller can be obtained easily by using Matlab tool box. The validity and the advantage of this design method are illustrated by a benchmark example.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1329-1333,1373,共6页 Journal of Zhejiang University:Engineering Science
基金 国家杰出青年基金资助项目(60025308)中国高等学校优秀青年教师教学科研奖励基金项目国家自然科学基金资助项目(10371106).
关键词 时滞系统 鲁棒控制 α-稳定 线性矩阵不等式 time-delay system robust control s-stable linear matrix inequality
  • 相关文献

参考文献10

  • 1BOURLES H. α-stability and robustness of large-scale interconnected systems [J]. International Journal of Control, 1987, 45 (6): 2221 - 2232.
  • 2BOURLES H. α-stability of systems governed by a functional differential equation-extension of results concerning linear delay systems [J]. International Journal of Control, 1987, 45 (6): 2233-2234.
  • 3CHILALI M, GAHINE T P. H design with an α-stability constraint: an LMI approach [A]. Proceeding IFAC Workshop Robust control D~ign[C]. Rio de Janeiro, Brazil:[s. n. ], 1994, 30: 312.
  • 4WANG R J, WANG W J. α-stability analysis of perturbed systems with multiple noncommensurate time delays [J].IEEE Transaction on Automatic Control, 1996, 43 (4):349 -352.
  • 5NICULESCU S I. H. memoryless control with an α-stability constraint for time-delay systems., an LMI Approach [J]. IEEE Transaction on Automatic Control,1998, 43 (5): 739- 743.
  • 6PHAT V N. New stabilization criteria for linear time-varying systems with state delay and norm-bounded uncertainties [J]. IEEE Transaction on Automatic Control,2002, 47 (12): 2095-2098.
  • 7鲁仁全,苏宏业,褚健.一类Lur'e系统新的绝对稳定性与绝对二次镇定条件[J].浙江大学学报(工学版),2004,38(2):129-134. 被引量:5
  • 8MAO W J, CHU J. Quadratic stabilization of dynamic interval systems [J]. IEEE Transaction on Automatic Control, 2003, 48 (6): 1007-1012.
  • 9MAGDI S M. Robust control and filtering for time-delay system [M]. New York: Marcel Dekker, 2000.
  • 10JEUNG E T, KIM J H, PARK H B. H-oulput feedback controller design for linear syslems with time-varying delayed state [J].IEEE Transaction on Autumatic Control, 1998, 43 (7) : 971 - 974.

二级参考文献11

  • 1[1]HALE J K. Theory of functional differential equation [M]. New York: Springer-Verlag, 1977.
  • 2[2]HALE J K. Introduction to functional differential equations [M]. New York: Springer-Verlag, 1993.
  • 3[3]YU L, CHEN G D. Memoryless stabilization of uncertain linear systems with time-varying state and control delays [J]. Advan Mod Ana, Series C,1999:27-34.
  • 4[4]YU L, CHU J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems [J]. Automatica, 1999,35(7):1155-1160.
  • 5[5]SU H Y, WANG J C, YU L, et al. Robust memoryless controller design for a class of time-varying uncertain linear time-delay systems [A]. Proc ACC'97 [C]. Albuquerque NM, USA:[s.n.], 1997: 3662-3663.
  • 6[6]PARK C W, KANG H J, YEE Y H, et al. Numerical robust stability analysis of fuzzy feedback linearization regulator based on linear matrix inequality approach [J]. IEE Proc Control Theory Appl, 2002,149(1):82-88.
  • 7[7]SU T J, LU C Y, TSAI J S H. LMI approach to delay-dependent robust stability for uncertain time-delay systems [J]. IEE Proc Control Theory Appl, 2001,148(2):209-212.
  • 8[8]BOYD S, GHAOUI L El, FERON E, et al. Linear matrix inequalities in systems and control theory [M]. Philadelphia, PA: SIAM, 1994.
  • 9[9]GAO H J, WANG C H. Comments and further results on 'a descriptor system approach to H∞ control of linear time-delay systems' [J]. IEEE Trans Automat Contr, 2002,47(3):520-525.
  • 10[10]FRIDMAN E, SHAKED U. A descriptor system approach to H∞ control of linear time-delay systems [J]. IEEE Trans Automat Contr, 2002,47(2):253-279.

共引文献4

同被引文献16

  • 1李春涛,谭永红.基于状态观测器的迟滞非线性系统输出反馈控制[J].控制与决策,2004,19(9):967-972. 被引量:4
  • 2KALMAN R E. Nonlinear aspects of sampled-data control systems [C]//Proceedings of the Symposium on Non- linear Circuit Analysis. New York, USA:[ s. n. ], 1956: 273-313.
  • 3GRAY R, NEUHOFF D. Quantization [J]. IEEE Transactions on Information Theory, 1998, 44 ( 6 ) : 2325 - 2383.
  • 4WlDROW B, KOLLAR I, LIU M. Statistical theory of quantization[J]. IEEE Transactions on Automatic Control, 1996, 45(2): 351-361.
  • 5MILLER R, MICHEL A, FANEL J. Quantizer effects on steady state error specifications of digital control sys tems [J]. IEEE Transactions on Automatic Control, 1989, 34(6): 651-654.
  • 6ELlA N, MITTER S. Stabilization of linear systems with limited information [J]. IEEE Transactions on Automatic Control, 2001, 46(9) : 1384 - 1400.
  • 7FU M, XIE L. The sector bound approach to quantized feedback control [J]. IEEE Transactions on Automatic Control, 2005, 50(11) : 1698 - 1711.
  • 8GAO H, ZHU S, CHEN Z, et al, Delay-dependent state feedback guaranteed cost control uncertain singular time-delay systems [C]//Conference of Decision Control and European Control. Seville, Spain: [s. n. ] .2005 : 4354 - 4359.
  • 9WANG H, XUE A, LU R, et al. Delay-dependent robust stability stabilization for uncertain singular systems with time-varying delay [C] // American Control Conference. Seattle, Washington, USA: [ s. n. ], 2008:2839 - 2844.
  • 10LU R, DAI X, SU H, et al. Delay-dependent robust stability and stabilization conditions for a class of lur'e singualr time-delay system [J]. Asian Journal of Control, 2008, 10(4) : 462 - 469.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部