期刊文献+

Ag-Cu-Ti-(Ti+C)反应-复合钎焊SiC陶瓷和Ti合金的接头组织 被引量:11

Microstructure of reactive composite brazing joints of SiC ceramics and Ti alloy by using Ag-Cu-Ti-(Ti+C) as bonding material
在线阅读 下载PDF
导出
摘要 研究用合金化Ag-Cu-Ti粉、Ti粉、C粉组成的混合粉末真空无压钎焊再结晶SiC陶瓷和Ti合金,采用X射线衍射、扫描电镜和能谱仪对接头的组织结构进行了分析.结果表明:在67.6%Ag-26.4%Cu-6%Ti(质量分数)粉末中加入相当于15%~30%TiC(体积分数)的(Ti+C)粉末(Ti与C摩尔比为1:1),经920℃,30 min真空钎焊,Ti和C原位合成TiC,形成以TiC晶粒强化的连接良好的复合接头;形成的TiC分布于Ag相、Cu-Ti相中;TiC的形成明显降低了接头的热应力.过量的(Ti+C)粉末则导致反应不完全,容易在连接层中产生孔洞,影响接头强度;焊接过程中,Ti由钛合金扩散进入连接层,Cu也有部分从连接层中扩散进入钛合金. By using the mixed powder of Ti, C (mole ratio of Ti to C is 1 : 1) powders for in-situ synthesizing TiC in 15 %- 30 % TiC (volume fraction) and alloying 67. 6 % Ag-26. 4 % Cu-6 % Ti ( mass fraction) powder as vacuum non-pressure brazing material, sound brazed joints of SiC ceramics/Ti alloy were acquired at 920 ℃ for 30 min. The joints were investigated by X-ray diffractrometry, scanning electron microscopy, and energy dispersive spectrometry. The results show that TiC grains are in-situ synthesized and distribute in Ag and Cu-Ti phases of the bonding layers, distinctly lowering the thermal stress of the joints. However, excess amount of (Ti + C) powder easily brings about the formation of pores and incomplete reactions of Ti and C in the bonding layers, which are detrimental to the joints' strengths. During brazing process, Ti element in Ti-alloy and Cu element in the bonding layer interdiffuse.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第9期1326-1331,共6页 The Chinese Journal of Nonferrous Metals
基金 武器装备预研基金资助项目(51418050503QT0203) 高等学校博士学科点专项科研基金资助项目(20030008014)
关键词 SIC陶瓷 TI合金 原位合成TIC 连接 复合钎焊 SiC ceramics Ti alloy in-situ synthesizing TiC bonding composite-brazing
  • 相关文献

参考文献16

二级参考文献33

  • 1陈铮,周飞,李志章,罗启富.陶瓷与金属活性钎焊的研究进展[J].材料科学与工程,1995,13(3):61-64. 被引量:19
  • 2汪建华,楼松年,戚新海,吴鲁海.陶瓷金属扩散焊接的残余应力及其缓和措施[J].硅酸盐学报,1995,23(6):605-609. 被引量:14
  • 3任家烈 吴爱萍.先进材料的焊接[M].北京:机械工业出版社,2000.125-189.
  • 4理查德 布鲁克 J.陶瓷工艺. 材料科学与技术丛书(第17B卷)[M].北京: 科学出版社,1999.229-232.
  • 5[1]Barsoum M W, El Raghy T. A progress report onTi3SiC2, Ti3GeC2· and the H-phases, M2BX[J]. J Mater Synth Process, 1997, 5(2): 197-216.
  • 6[2]Jeitschko W, Nowotny H, Benesovsky F. Carbon containing ternary compounds (H phases) [J]. MonatschChem, 1963, 94(4): 672-676.
  • 7[4]Barsoum M W, Ali M, El-Raghy T. Processing andcharacterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall Mater Trans, 2000, 31A(7): 1857-1865.
  • 8[5]Munir Z A, Anselmi-Tamburini U. Self-propagating exothermic reaction: the synthesis of high-temperature materials by combustion[J]. Mater Sci Rep, 1989, 3(7, 8): 277-365.
  • 9[6]ZHOU Ai guo, WANG Chang-an, GE Zhen-bin, et al. Preparation of Ti3 AlC2 and Ti2 A1C by self-propagating high-temperature synthesis [J]. J Mater Sci Lett, 2001, 20(8): 1971 - 1973.
  • 10[7]Khoptiar Y, Gotman I. Ti2AlC ternary carbide synthesized by thermal explosion[J]. Mater Lett, 2002, 57(1): 72 - 76.

共引文献117

同被引文献173

引证文献11

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部