期刊文献+

Regularity of Weak Solutions of Nonlinear Equations with Discontinuous Coefficients 被引量:3

Regularity of Weak Solutions of Nonlinear Equations with Discontinuous Coefficients
原文传递
导出
摘要 In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function. In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.
作者 Qi Kang RAN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期705-714,共10页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(10371021)
关键词 Nonlinear elliptic equations Local Regularity Calderon-Zygmund decomposition VMO space Local weak L^p(Ω) space Nonlinear elliptic equations, Local Regularity, Calderon-Zygmund decomposition, VMO space, Local weak L^p(Ω) space
  • 相关文献

参考文献14

  • 1Uhlenbeck, K.: Regularity for a class of nonlinear elliptic equations. Acta Math., 138, 219-240 (1977).
  • 2Ural'tseva, N. N.: Degenerate quasilinear elliptic system (in Russian). Zap. Nauchn. Sere. Leningrad.Otdel. Mat. Inst. Steklov., 7, 184-222 (1968).
  • 3Evans, L. C.: A new proof of local C^1.α regularity for solutions of certain degenerate elliptic PDES. J. Differential Equations, 45, 356-373 (1982).
  • 4Lewis, J.: Regularity of the derivatives of solutions to certain elliptic equations. Indiana Univ. Math. J.,32, 849-858 (1983).
  • 5Tan, Z., Yan, Z. Q.: Regularity of weak solutions to some degenerate elliptic equations. Northeastern Math.J., 9(2), 143-156 (1993).
  • 6Kinnunen, J., Zhou, S. L.: A local estimate for nonlinear equations with discontinuous coefficients. Comm. in Partial Differential Equations, 24(11&:12), 2043-2068 (1999).
  • 7Caffarelli, L. A., Peral, I.: On W^1-p estimates for elliptic equations in divergence form. Comm. Pure. Appl. Math., LI, 1-21 (1998).
  • 8Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, NJ, 1983.
  • 9Tolksdorf, P.: Regularity for a more gencral class of quasilinear elliptic equations. J. Differential Equations,51(1), 126-150 (1984).
  • 10Ran, Q. K., Zhou, S. Q.: Regularity of weak solutions to a class of degenerate elliptic equations. Appl. Math. J. Chinese Univ. Ser. A, 15(1), 41-50 (2000).

同被引文献2

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部