期刊文献+

分布式并行约束归纳逻辑程序设计研究 被引量:1

Distributed Parallelized Constraint Inductive Logic Programming
在线阅读 下载PDF
导出
摘要 CILP是关系数据挖掘的主要技术之一。为提高CILP系统的效率,提出了一种基于C3模型,元学习技术和主从式静态负载平衡策略的分布式并行CILP算法,并实现了一个基于COW机群结构的分布式并行CILP原型系统。实验表明该算法是高效的,能获得较好的负载平衡,较高的加速比和并行效率。 CILP is one of the major techniques of RDM. To solve the efficiency problem in the CILP system, a distributed parallelized CILP algorithm is presented, which is based on the C^3 Model, Meta-Learn Technology and Master-Slave model of the static load balancing strategy. Also, a prototype of the distributed parallel CILP system is implemented with the COW clusters. Experiment shows that this algorithm is efficient, and can get good load balancing, speedup and parallel efficiency.
出处 《计算机应用研究》 CSCD 北大核心 2005年第9期34-36,45,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60173014) 北京市自然科学基金资助项目(4022003) 北京工业大学研究生科技基金资助项目(YKJ-2003-45)
  • 相关文献

参考文献7

  • 1S Dzeroski, N Lavrac. Relational Data Mining[M]. Springer-Verlag Berlin, 2001:22-26.
  • 2C Liu, N Zhong, et al. Constraint ILP and Its Application to KDD[C]. Nagoya, Japan: Proc. of IJCAI-97 Workshop on Frontiers of ILP, 1997.103-104.
  • 3CXavier SSlyengar 张云泉 陈英.并行算法导论[M].北京:机械工业出版社,2003.28-37.
  • 4A L Prodromidis, et al. Meta-Learning in Distributed Data Mining Systems: Issues and Approaches[M]. To Appear in "Advances in Distributed Data Mining", Book AAAI Press, 1999.
  • 5Lei Zheng, et al. Generating Numerical Constraints in CILP[J]. International Journal of Pattern Recognition and Artificial Intelligence.
  • 6Balance Scale Weight & Distance[EB/OL].http://axon.cs.byu.edu/~martinez/classes/470/MLDB/balance-scale.
  • 7Lei Zheng, Chunnian Liu, Dong Jia, et al. A New Approach to Constraint Inductive Logic Programming[C]. Proc. of the 14th International Symposium on Methodologies for Intelligent Systems (ISMIS-2003), as Springer-Verlag, Japan,LNAI 2871, 2003.357-364.

同被引文献42

  • 1刘伟辉,王丽珍.基于多关系的空间分类算法研究[J].云南大学学报(自然科学版),2006,28(S1):158-163. 被引量:4
  • 2曾玲,熊才权,胡恬.关联规则在空间数据挖掘中的研究[J].计算机与数字工程,2005,33(6):71-73. 被引量:3
  • 3马荣华,马晓冬,蒲英霞.从GIS数据库中挖掘空间关联规则研究[J].遥感学报,2005,9(6):733-741. 被引量:24
  • 4王佐成,汪林林,薛丽霞,李永树.空间关联规则的双向挖掘[J].计算机科学,2006,33(7):199-203. 被引量:11
  • 5Han J,Kamber M.Data mining:concepts and techniques[M].San Francisco:Morgan Kaufmann,2000.
  • 6Dzeroski S.Multi-relational data mining:an introduction[M]//ACM SIGKDD Explorations Newsletter.[S.l.]:ACM Press,2003:1-16.
  • 7Dunham M H.Data mining introductory and advanced topics[M].Upper Saddle River:Prentice Hall,2003.
  • 8Dzeroski S,Lavrac N.Relational data mining[M].Berlin:Springer,2001.
  • 9Dzeroski S.Relational data mining applications:an overview[M]//Relational Data Mining.[S.l.]:Springer,2001:339-364.
  • 10Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C]//Proceedings of International Conference Very Large Data Bases,Santiago,1994:487-499.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部