期刊文献+

一个改进的弹性网络算法求解TSP问题 被引量:5

A Modified Elastic Net Algorithm for Traveling Salesman Problem
在线阅读 下载PDF
导出
摘要 通过对弹性神经网络进行分析,给出了求解TSP问题的一个改进的弹性网络算法.弹性网络是一个梯度下降的方法,由于弹性网络的能量函数有很多局部极小值,在实际的计算仿真中,经常会遇到网络陷入局部极小值而无法逃逸的情况.本文介绍一个改进的弹性网络学习算法,当弹性网络陷入局部极小值时,通过参数在能量函数梯度增加的方向改变参数值,从而帮助网络跳出局部极小值,求出全局最优解或更好的结果.通过对6个TSP问题进行模拟仿真,得出结论:对所有的问题,这个算法能够逃逸出弹性网络的局部极小值,求得最优解或更好的解. The modified elastic net algorithm for finding solutions to the traveling salesman problem (TSP) is introduced. The elastic net method is basicallya gradient descent algorithm that will attempt to take the best path to the nearest minimum, whether global or local, If a local minimum is reached,the network will fail to learn. This paper introduces a gradient ascent learning algorithm of the elastic net for TSP. The learning algorithm is that the elastic net minimizes the path through cities. The procedure is equivalent to gradient descent of an energy function; and lends to a local minimum of energy that represents a good solution to the problem. Once the elastic net gets stuck in local minima, the gradient ascent algorithm attempts to fill up the valley by modifying parameters in a gradient ascent direction of the energy function. These two phases are repeated until the elastic net gets out of local minima and produces the shorted or better tour through cities. We test the algorithm on a set of TSP. For all instances,the modified algorithm is showed to be capable of escaping from the elastic net local minima and producing optimal tours or more meaningful tours than the original elastic net.
机构地区 中北大学数学系
出处 《华北工学院学报》 2005年第4期235-238,共4页 Journal of North China Institute of Technology
基金 山西省自然基金资助项目
关键词 旅行推销商问题 人工神经网络 弹性网络 能量函数 traveling salesman problem artificial neural networks elastic net energy function
  • 相关文献

参考文献8

  • 1Durbin R, Willshaw D. An analogue approach to the traveling salesman problem using an elastic net method[J]. Nature, 1987, 326: 689-691.
  • 2Potvin J Y. The traveling salesman problem: A eural network perspective[J]. ORSA Journal on Computing, 1993,5(4): 328-348.
  • 3Crowder H, Padberg M. Solving large-scale symmetric traveling salesman problem to optimality[J]. Manage. Sci. ,1980, 26: 495-509.
  • 4Durbin R, Szeliski R, Yuille A. An analysis of the elastic net approach to the traveling salesman problem[J]. Neural Computation, 1989, 1: 348-358.
  • 5Simmen M W. Parameter sensitivity of the elastic net approach to the traveling salesman[J]. Neural Computation,1991, 3: 363-374.
  • 6Burr D J. An improved elastic net method for the traveling salesman problem[C]. Proc. Int. Conf. on Neural Networks, I-69-76, San Diego, CA, 1988. 67-76.
  • 7Stone J V. The optimal elastic net: Finding solution for the traveling salesman[C]. Proc. International Conference on Artificial Neural Networks, Brighton, England, 1992. 170- 174.
  • 8Wang Jiahai, Tang Zheng, Cao Qiping. An elastic net learning algorithm for edge linking of images[J]. IEICETransactions on Fundamentals of Lectronics, Communication and Computer Science, 2003, E86-A. 2879-2886.

同被引文献21

  • 1胡红萍,胡红莉,王建中.严格有向图Hamilton性质的研究[J].华北工学院学报,2005,26(2):83-86. 被引量:1
  • 2管琳,白艳萍.用分支定界算法求解旅行商问题[J].中北大学学报(自然科学版),2007,28(2):104-107. 被引量:11
  • 3[4]Zhang Wendong,Bai Yanping.A hybrid elastic net method for solving the traveling salesman problem[J].International of Software Engineering and Knowledge Engineering,2005,15(2):447-453
  • 4KIRKPATRICK S,GELATT J R,VECCHI J R.Optimization by simulated annealing[J].Science,1983,220:671-680.
  • 5DURBIN R,WILLSHAW D.An analogue approach to the traveling salesman problem using an elastic net method[J].Nature,1987,326:689-691.
  • 6米凯利维茨.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 7邢文循 谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.90-129.
  • 8康立山 谢云 尤矢勇.模拟退火算法[M].北京:科学出版社,1994.150-151.
  • 9张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 10郭志军.分支定界算法的MATLAB实现[J].江西教育学院学报,2007,28(6):4-7. 被引量:5

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部