期刊文献+

非水相液体传输的耦合动力学模型及数值解 被引量:1

Coupled dynamic model of light non-aqueous phase liquid transport in subsurface and its numerical solution
在线阅读 下载PDF
导出
摘要 基于多孔介质流体力学和溶质运移动力学原理,建立了非水相液体在地下环境系统中传输过程的多组分多相流耦合数学模型,对多相流渗流场模型和污染物传输浓度场模型分别采用了IMPES和特征有限差分方法进行数值离散,模型中充分考虑了污染物在地下环境体系中扩散、吸附解吸、界面间分配以及微生物降解等化学反应以及气相作用,并以苯在土壤中传输的浓度分布为例,验证了模型的可靠性。该数值模型较以往数值模型相比,可有效地克服在数值解过程中的弥散和振荡,对于石油工程领域中油气藏多相流数值模拟奠定基础。 A multicomponent and multiphase flow coupled model of pollutant transport and migration in subsurface has been established based on the theory of porous media hydrodynamic and solute transport theory. The characteristic finite difference method and implicit pressure explicit saturation method was adopted to discrete the coupled model. The model accounts for the complex process of dispersion, absorption/desorption, and distribution between liquid-solid interfaces under the assumption of local chemical equilibrium. The method can avoid numerical divergence and oscillation compared with previous numerical model. Numerical simulation results indicate the concentration of Benzene agrees well with measured values, which verifies the model reliability and practicality. It provides theoretic evidence for petroleum components quality monitoring and numerical analysis in oil-gas reservoirs.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2005年第4期524-526,共3页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(50309015 50374041) 武汉市青年科技计划资助项目(20055003059-33) 湖北省重点实验室开放基金资助项目(YK2005-08)
关键词 非水相液体 多组分多相流 耦合数学模型 数值解 light non-aqueous phase liquid multicomponent and multiphase flow coupled mathematical model numerical solution
  • 相关文献

参考文献5

  • 1Rao, P S C, Annabel, M D, Kim, H. NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques[J].Journal of Contaminant Hydrology, 2000,45(1-2): 63-78.
  • 2Milly C D. Advances in modeling of water in the unsaturated zone [J].Transport in Porous Media, 1988,(2): 491-514.
  • 3薛强,徐应明,刘建军.降雨入渗对填埋场土壤水分动力学行为的影响[J].辽宁工程技术大学学报(自然科学版),2004,23(5):618-620. 被引量:18
  • 4Goode, D J. Particle velocity interpolation in block-centered finite difference groundwater flow models [J]. Water Resources Research,1990, 26(5): 925-940.
  • 5Van Geel, PJ, Sykes, J F. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand: 1. Laboratory experiment and image analysis techniques [J]. Journal of Contaminant Hydr ology, 1994,17( 1 ): 1-2.

二级参考文献4

  • 1Paniconi C, Aldama A A,Wood E F. Numerical evaluation of iterative and noniterative methods for the solution of nonlinear Richards equation[J]. Water Re sour. Res., 1991,27(9): 1147-1163.
  • 2Parker, J.C., R.J. Lenhard, and T. Kuppusany. A parametric model for constitutive properties governing multiphase flow in porous media[J].Water Resour. Research ,1987,23(6):618-624.
  • 3Van Genuchten, M.Th.. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils [J]. Soil Sci. Soc. Amer.J., 1980,44(8): 892-898.
  • 4Yeh T.C.J, Strivastava R, Guzm A, and Harted T.A numerical model for water and chemical transport in variably saturated porous media [J].Groundwater, 1993,31(5): 634-644.

共引文献17

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部